| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrnegconv-P8 | |||
| Description: Converse of ndnfrneg-P7.2 827.
This statement is not deducible with intuitionist logic. |
| Ref | Expression |
|---|---|
| nfrnegconv-P8.1 | ⊢ (𝛾 → Ⅎ𝑥 ¬ 𝜑) |
| Ref | Expression |
|---|---|
| nfrnegconv-P8 | ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrnegconv-P8.1 | . 2 ⊢ (𝛾 → Ⅎ𝑥 ¬ 𝜑) | |
| 2 | exnegall-P7 1046 | . . . . . 6 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 3 | 2 | rcp-NDBIER0 241 | . . . . 5 ⊢ (¬ ∀𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
| 4 | 3 | rcp-NDIMP0addall 207 | . . . 4 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (¬ ∀𝑥𝜑 → ∃𝑥 ¬ 𝜑)) |
| 5 | dfnfreealtonlyif-P7 966 | . . . 4 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 6 | allnegex-P7 958 | . . . . . 6 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 7 | 6 | rcp-NDBIEF0 240 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 → ¬ ∃𝑥𝜑) |
| 8 | 7 | rcp-NDIMP0addall 207 | . . . 4 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (∀𝑥 ¬ 𝜑 → ¬ ∃𝑥𝜑)) |
| 9 | 4, 5, 8 | dsyl-P3.25 261 | . . 3 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (¬ ∀𝑥𝜑 → ¬ ∃𝑥𝜑)) |
| 10 | 9 | trnsp-P3.31d 288 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 11 | dfnfreealtif-P7 964 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 12 | 1, 10, 11 | dsyl-P3.25.RC 262 | 1 ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: nfrnegconv-P8.RC 1111 nfrnegconv-P8.CL 1112 |
| Copyright terms: Public domain | W3C validator |