PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrnegconv-P8

Theorem nfrnegconv-P8 1110
Description: Converse of ndnfrneg-P7.2 827.

This statement is not deducible with intuitionist logic.

Hypothesis
Ref Expression
nfrnegconv-P8.1 (𝛾 → Ⅎ𝑥 ¬ 𝜑)
Assertion
Ref Expression
nfrnegconv-P8 (𝛾 → Ⅎ𝑥𝜑)

Proof of Theorem nfrnegconv-P8
StepHypRef Expression
1 nfrnegconv-P8.1 . 2 (𝛾 → Ⅎ𝑥 ¬ 𝜑)
2 exnegall-P7 1046 . . . . . 6 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
32rcp-NDBIER0 241 . . . . 5 (¬ ∀𝑥𝜑 → ∃𝑥 ¬ 𝜑)
43rcp-NDIMP0addall 207 . . . 4 (Ⅎ𝑥 ¬ 𝜑 → (¬ ∀𝑥𝜑 → ∃𝑥 ¬ 𝜑))
5 dfnfreealtonlyif-P7 966 . . . 4 (Ⅎ𝑥 ¬ 𝜑 → (∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑))
6 allnegex-P7 958 . . . . . 6 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
76rcp-NDBIEF0 240 . . . . 5 (∀𝑥 ¬ 𝜑 → ¬ ∃𝑥𝜑)
87rcp-NDIMP0addall 207 . . . 4 (Ⅎ𝑥 ¬ 𝜑 → (∀𝑥 ¬ 𝜑 → ¬ ∃𝑥𝜑))
94, 5, 8dsyl-P3.25 261 . . 3 (Ⅎ𝑥 ¬ 𝜑 → (¬ ∀𝑥𝜑 → ¬ ∃𝑥𝜑))
109trnsp-P3.31d 288 . 2 (Ⅎ𝑥 ¬ 𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
11 dfnfreealtif-P7 964 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
121, 10, 11dsyl-P3.25.RC 262 1 (𝛾 → Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrnegconv-P8.RC  1111  nfrnegconv-P8.CL  1112
  Copyright terms: Public domain W3C validator