PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrnegconv-P8.CL

Theorem nfrnegconv-P8.CL 1112
Description: Closed Form of nfrnegconv-P8 1110.

This statement is not deducible with intuitionist logic.

Assertion
Ref Expression
nfrnegconv-P8.CL (Ⅎ𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)

Proof of Theorem nfrnegconv-P8.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (Ⅎ𝑥 ¬ 𝜑 → Ⅎ𝑥 ¬ 𝜑)
21nfrnegconv-P8 1110 1 (Ⅎ𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrnegbi-P8  1113
  Copyright terms: Public domain W3C validator