PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrnegbi-P8

Theorem nfrnegbi-P8 1113
Description: Biconditional Combining ndnfrneg-P7.2 827 and nfrnegconv-P8 1110.

This statement is not deducible with intuitionist logic.

Assertion
Ref Expression
nfrnegbi-P8 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)

Proof of Theorem nfrnegbi-P8
StepHypRef Expression
1 nfrnegconv-P8.CL 1112 . 2 (Ⅎ𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)
2 ndnfrneg-P7.2.CL 904 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
31, 2rcp-NDBII0 239 1 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator