PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrneg-P7.2.CL

Theorem ndnfrneg-P7.2.CL 904
Description: Closed Form of ndnfrneg-P7.2 827.
Assertion
Ref Expression
ndnfrneg-P7.2.CL (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem ndnfrneg-P7.2.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
21ndnfrneg-P7.2 827 1 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-nfree-D6.1 682
This theorem is referenced by:  nfrnegbi-P8  1113
  Copyright terms: Public domain W3C validator