PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubmultd-P7.RC

Theorem ndsubmultd-P7.RC 903
Description: Inference Form of ndsubmultd-P7 859.
Hypotheses
Ref Expression
ndsubmultd-P7.RC.1 𝑠 = 𝑡
ndsubmultd-P7.RC.2 𝑢 = 𝑤
Assertion
Ref Expression
ndsubmultd-P7.RC (𝑠𝑢) = (𝑡𝑤)

Proof of Theorem ndsubmultd-P7.RC
StepHypRef Expression
1 ndsubmultd-P7.RC.1 . . . 4 𝑠 = 𝑡
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑠 = 𝑡)
3 ndsubmultd-P7.RC.2 . . . 4 𝑢 = 𝑤
43ndtruei-P3.17 182 . . 3 (⊤ → 𝑢 = 𝑤)
52, 4ndsubmultd-P7 859 . 2 (⊤ → (𝑠𝑢) = (𝑡𝑤))
65ndtruee-P3.18 183 1 (𝑠𝑢) = (𝑡𝑤)
Colors of variables: wff objvar term class
Syntax hints:  term-mult 5   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-multl 25  ax-L9-multr 26
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator