PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubmultd-P7

Theorem ndsubmultd-P7 859
Description: Natural Deduction: Function Substitution Rule ('' dual).
Hypotheses
Ref Expression
ndsubmultd-P7.1 (𝛾𝑠 = 𝑡)
ndsubmultd-P7.2 (𝛾𝑢 = 𝑤)
Assertion
Ref Expression
ndsubmultd-P7 (𝛾 → (𝑠𝑢) = (𝑡𝑤))

Proof of Theorem ndsubmultd-P7
StepHypRef Expression
1 ndsubmultd-P7.1 . . 3 (𝛾𝑠 = 𝑡)
21ndsubmultl-P7.24d 854 . 2 (𝛾 → (𝑠𝑢) = (𝑡𝑢))
3 ndsubmultd-P7.2 . . . 4 (𝛾𝑢 = 𝑤)
43ndsubmultr-P7.24e 855 . . 3 (𝛾 → (𝑡𝑢) = (𝑡𝑤))
54ndsubeqr-P7.22b 848 . 2 (𝛾 → ((𝑠𝑢) = (𝑡𝑢) ↔ (𝑠𝑢) = (𝑡𝑤)))
62, 5bimpf-P4 531 1 (𝛾 → (𝑠𝑢) = (𝑡𝑤))
Colors of variables: wff objvar term class
Syntax hints:  term-mult 5   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-multl 25  ax-L9-multr 26
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  ndsubmultd-P7.RC  903  ndsubmultd-P7.CL  923
  Copyright terms: Public domain W3C validator