PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubaddd-P7

Theorem ndsubaddd-P7 858
Description: Natural Deduction: Function Substitution Rule ('+' dual).
Hypotheses
Ref Expression
ndsubaddd-P7.1 (𝛾𝑠 = 𝑡)
ndsubaddd-P7.2 (𝛾𝑢 = 𝑤)
Assertion
Ref Expression
ndsubaddd-P7 (𝛾 → (𝑠 + 𝑢) = (𝑡 + 𝑤))

Proof of Theorem ndsubaddd-P7
StepHypRef Expression
1 ndsubaddd-P7.1 . . 3 (𝛾𝑠 = 𝑡)
21ndsubaddl-P7.24b 852 . 2 (𝛾 → (𝑠 + 𝑢) = (𝑡 + 𝑢))
3 ndsubaddd-P7.2 . . . 4 (𝛾𝑢 = 𝑤)
43ndsubaddr-P7.24c 853 . . 3 (𝛾 → (𝑡 + 𝑢) = (𝑡 + 𝑤))
54ndsubeqr-P7.22b 848 . 2 (𝛾 → ((𝑠 + 𝑢) = (𝑡 + 𝑢) ↔ (𝑠 + 𝑢) = (𝑡 + 𝑤)))
62, 5bimpf-P4 531 1 (𝛾 → (𝑠 + 𝑢) = (𝑡 + 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   + term-add 4   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addl 23  ax-L9-addr 24
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  ndsubaddd-P7.RC  900  ndsubaddd-P7.CL  920
  Copyright terms: Public domain W3C validator