PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubaddd-P7.RC

Theorem ndsubaddd-P7.RC 900
Description: Inference Form of ndsubaddd-P7 858.
Hypotheses
Ref Expression
ndsubaddd-P7.RC.1 𝑠 = 𝑡
ndsubaddd-P7.RC.2 𝑢 = 𝑤
Assertion
Ref Expression
ndsubaddd-P7.RC (𝑠 + 𝑢) = (𝑡 + 𝑤)

Proof of Theorem ndsubaddd-P7.RC
StepHypRef Expression
1 ndsubaddd-P7.RC.1 . . . 4 𝑠 = 𝑡
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑠 = 𝑡)
3 ndsubaddd-P7.RC.2 . . . 4 𝑢 = 𝑤
43ndtruei-P3.17 182 . . 3 (⊤ → 𝑢 = 𝑤)
52, 4ndsubaddd-P7 858 . 2 (⊤ → (𝑠 + 𝑢) = (𝑡 + 𝑤))
65ndtruee-P3.18 183 1 (𝑠 + 𝑢) = (𝑡 + 𝑤)
Colors of variables: wff objvar term class
Syntax hints:   + term-add 4   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addl 23  ax-L9-addr 24
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator