PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubaddr-P7.24c.RC

Theorem ndsubaddr-P7.24c.RC 899
Description: Inference Form of ndsubaddr-P7.24c 853.
Hypothesis
Ref Expression
ndsubaddr-P7.24c.RC.1 𝑡 = 𝑢
Assertion
Ref Expression
ndsubaddr-P7.24c.RC (𝑤 + 𝑡) = (𝑤 + 𝑢)

Proof of Theorem ndsubaddr-P7.24c.RC
StepHypRef Expression
1 ndsubaddr-P7.24c.RC.1 . . . 4 𝑡 = 𝑢
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑡 = 𝑢)
32ndsubaddr-P7.24c 853 . 2 (⊤ → (𝑤 + 𝑡) = (𝑤 + 𝑢))
43ndtruee-P3.18 183 1 (𝑤 + 𝑡) = (𝑤 + 𝑢)
Colors of variables: wff objvar term class
Syntax hints:   + term-add 4   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-addr 24
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator