PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubaddl-P7.24b.RC

Theorem ndsubaddl-P7.24b.RC 898
Description: Inference Form of ndsubaddl-P7.24b 852.
Hypothesis
Ref Expression
ndsubaddl-P7.24b.RC.1 𝑡 = 𝑢
Assertion
Ref Expression
ndsubaddl-P7.24b.RC (𝑡 + 𝑤) = (𝑢 + 𝑤)

Proof of Theorem ndsubaddl-P7.24b.RC
StepHypRef Expression
1 ndsubaddl-P7.24b.RC.1 . . . 4 𝑡 = 𝑢
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑡 = 𝑢)
32ndsubaddl-P7.24b 852 . 2 (⊤ → (𝑡 + 𝑤) = (𝑢 + 𝑤))
43ndtruee-P3.18 183 1 (𝑡 + 𝑤) = (𝑢 + 𝑤)
Colors of variables: wff objvar term class
Syntax hints:   + term-add 4   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-addl 23
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator