PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubaddl-P7.24b

Theorem ndsubaddl-P7.24b 852
Description: Natural Deduction: Function Substitution Rule ('+' left).
Hypothesis
Ref Expression
ndsubaddl-P7.24b.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
ndsubaddl-P7.24b (𝛾 → (𝑡 + 𝑤) = (𝑢 + 𝑤))

Proof of Theorem ndsubaddl-P7.24b
StepHypRef Expression
1 ndsubaddl-P7.24b.1 . 2 (𝛾𝑡 = 𝑢)
21subaddl-P5 645 1 (𝛾 → (𝑡 + 𝑤) = (𝑢 + 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   + term-add 4   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-addl 23
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  ndsubaddd-P7  858  ndsubaddl-P7.24b.RC  898  ndsubaddl-P7.24b.CL  918
  Copyright terms: Public domain W3C validator