PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subaddl-P5

Theorem subaddl-P5 645
Description: Left Substitution Law for '+'.
Hypothesis
Ref Expression
subaddl-P5.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
subaddl-P5 (𝛾 → (𝑡 + 𝑤) = (𝑢 + 𝑤))

Proof of Theorem subaddl-P5
StepHypRef Expression
1 subaddl-P5.1 . 2 (𝛾𝑡 = 𝑢)
2 ax-L9-addl 23 . 2 (𝑡 = 𝑢 → (𝑡 + 𝑤) = (𝑢 + 𝑤))
31, 2syl-P3.24.RC 260 1 (𝛾 → (𝑡 + 𝑤) = (𝑢 + 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   + term-add 4   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-addl 23
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subaddd-P5  647  example-E5.02a  664  ndsubaddl-P7.24b  852
  Copyright terms: Public domain W3C validator