PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subsucc-P5

Theorem subsucc-P5 644
Description: Substitution Law for 's‘'.
Hypothesis
Ref Expression
subsucc-P5.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
subsucc-P5 (𝛾 → s‘𝑡 = s‘𝑢)

Proof of Theorem subsucc-P5
StepHypRef Expression
1 subsucc-P5.1 . 2 (𝛾𝑡 = 𝑢)
2 ax-L9-succ 22 . 2 (𝑡 = 𝑢 → s‘𝑡 = s‘𝑢)
31, 2syl-P3.24.RC 260 1 (𝛾 → s‘𝑡 = s‘𝑢)
Colors of variables: wff objvar term class
Syntax hints:  s‘term_succ 3   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-succ 22
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  psubsuccv-P6-L1  805  ndsubsucc-P7.24a  851  ndsubsucc-P7.24a.RC  897
  Copyright terms: Public domain W3C validator