PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubsucc-P7.24a.RC

Theorem ndsubsucc-P7.24a.RC 897
Description: Inference Form of ndsubsucc-P7.24a 851.
Hypothesis
Ref Expression
ndsubsucc-P7.24a.RC.1 𝑡 = 𝑢
Assertion
Ref Expression
ndsubsucc-P7.24a.RC s‘𝑡 = s‘𝑢

Proof of Theorem ndsubsucc-P7.24a.RC
StepHypRef Expression
1 ndsubsucc-P7.24a.RC.1 . . . 4 𝑡 = 𝑢
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑡 = 𝑢)
32subsucc-P5 644 . 2 (⊤ → s‘𝑡 = s‘𝑢)
43ndtruee-P3.18 183 1 s‘𝑡 = s‘𝑢
Colors of variables: wff objvar term class
Syntax hints:  s‘term_succ 3   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-succ 22
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator