| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndsubelofd-P7.RC | |||
| Description: Inference Form of ndsubelofd-P7 857. † |
| Ref | Expression |
|---|---|
| ndsubelofd-P7.RC.1 | ⊢ 𝑠 = 𝑡 |
| ndsubelofd-P7.RC.2 | ⊢ 𝑢 = 𝑤 |
| Ref | Expression |
|---|---|
| ndsubelofd-P7.RC | ⊢ (𝑠 ∈ 𝑢 ↔ 𝑡 ∈ 𝑤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndsubelofd-P7.RC.1 | . . . 4 ⊢ 𝑠 = 𝑡 | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → 𝑠 = 𝑡) |
| 3 | ndsubelofd-P7.RC.2 | . . . 4 ⊢ 𝑢 = 𝑤 | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → 𝑢 = 𝑤) |
| 5 | 2, 4 | ndsubelofd-P7 857 | . 2 ⊢ (⊤ → (𝑠 ∈ 𝑢 ↔ 𝑡 ∈ 𝑤)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ (𝑠 ∈ 𝑢 ↔ 𝑡 ∈ 𝑤) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 ∈ wff-elemof 7 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L8-inl 20 ax-L8-inr 21 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |