PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubsuccv-P6-L1

Theorem psubsuccv-P6-L1 805
Description: Lemma for psubsuccv-P6 806.
Hypothesis
Ref Expression
psubsuccv-P6-L1.1 ([𝑤 / 𝑥] 𝑎 = 𝑡𝑎 = 𝑢)
Assertion
Ref Expression
psubsuccv-P6-L1 (𝑥 = 𝑤 → (𝑏 = s‘𝑡𝑏 = s‘𝑢))
Distinct variable groups:   𝑡,𝑎   𝑢,𝑎   𝑤,𝑎   𝑡,𝑏   𝑢,𝑏   𝑤,𝑏,𝑎   𝑥,𝑎,𝑏

Proof of Theorem psubsuccv-P6-L1
StepHypRef Expression
1 rcp-NDASM1of2 193 . . . . . . 7 ((𝑎 = 𝑡𝑥 = 𝑤) → 𝑎 = 𝑡)
21eqsym-P5 627 . . . . . 6 ((𝑎 = 𝑡𝑥 = 𝑤) → 𝑡 = 𝑎)
3 psubtoisub-P6 765 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑎 = 𝑡 ↔ [𝑤 / 𝑥] 𝑎 = 𝑡))
4 psubsuccv-P6-L1.1 . . . . . . . . . . 11 ([𝑤 / 𝑥] 𝑎 = 𝑡𝑎 = 𝑢)
54rcp-NDIMP0addall 207 . . . . . . . . . 10 (𝑥 = 𝑤 → ([𝑤 / 𝑥] 𝑎 = 𝑡𝑎 = 𝑢))
63, 5bitrns-P3.33c 302 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑎 = 𝑡𝑎 = 𝑢))
76rcp-NDIMP0addall 207 . . . . . . . 8 (𝑎 = 𝑡 → (𝑥 = 𝑤 → (𝑎 = 𝑡𝑎 = 𝑢)))
87import-P3.34a.RC 306 . . . . . . 7 ((𝑎 = 𝑡𝑥 = 𝑤) → (𝑎 = 𝑡𝑎 = 𝑢))
91, 8bimpf-P4 531 . . . . . 6 ((𝑎 = 𝑡𝑥 = 𝑤) → 𝑎 = 𝑢)
102, 9eqtrns-P5 630 . . . . 5 ((𝑎 = 𝑡𝑥 = 𝑤) → 𝑡 = 𝑢)
1110subsucc-P5 644 . . . 4 ((𝑎 = 𝑡𝑥 = 𝑤) → s‘𝑡 = s‘𝑢)
1211subeqr-P5 635 . . 3 ((𝑎 = 𝑡𝑥 = 𝑤) → (𝑏 = s‘𝑡𝑏 = s‘𝑢))
1312rcp-NDIMI2 224 . 2 (𝑎 = 𝑡 → (𝑥 = 𝑤 → (𝑏 = s‘𝑡𝑏 = s‘𝑢)))
14 axL6ex-P5 625 . 2 𝑎 𝑎 = 𝑡
1513, 14exiav-P5.SH 616 1 (𝑥 = 𝑤 → (𝑏 = s‘𝑡𝑏 = s‘𝑢))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  s‘term_succ 3   = wff-equals 6  wff-imp 10  wff-bi 104  wff-and 132  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-succ 22  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubsuccv-P6  806
  Copyright terms: Public domain W3C validator