Proof of Theorem psubsuccv-P6-L1
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM1of2 193 |
. . . . . . 7
⊢ ((𝑎 = 𝑡 ∧ 𝑥 = 𝑤) → 𝑎 = 𝑡) |
| 2 | 1 | eqsym-P5 627 |
. . . . . 6
⊢ ((𝑎 = 𝑡 ∧ 𝑥 = 𝑤) → 𝑡 = 𝑎) |
| 3 | | psubtoisub-P6 765 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝑎 = 𝑡 ↔ [𝑤 / 𝑥] 𝑎 = 𝑡)) |
| 4 | | psubsuccv-P6-L1.1 |
. . . . . . . . . . 11
⊢ ([𝑤 / 𝑥] 𝑎 = 𝑡 ↔ 𝑎 = 𝑢) |
| 5 | 4 | rcp-NDIMP0addall 207 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 →
([𝑤 / 𝑥]
𝑎 = 𝑡 ↔
𝑎 = 𝑢)) |
| 6 | 3, 5 | bitrns-P3.33c 302 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑎 = 𝑡 ↔ 𝑎 = 𝑢)) |
| 7 | 6 | rcp-NDIMP0addall 207 |
. . . . . . . 8
⊢ (𝑎 = 𝑡 → (𝑥 = 𝑤 → (𝑎 = 𝑡 ↔ 𝑎 = 𝑢))) |
| 8 | 7 | import-P3.34a.RC 306 |
. . . . . . 7
⊢ ((𝑎 = 𝑡 ∧ 𝑥 = 𝑤) →
(𝑎 = 𝑡 ↔
𝑎 = 𝑢)) |
| 9 | 1, 8 | bimpf-P4 531 |
. . . . . 6
⊢ ((𝑎 = 𝑡 ∧ 𝑥 = 𝑤) → 𝑎 = 𝑢) |
| 10 | 2, 9 | eqtrns-P5 630 |
. . . . 5
⊢ ((𝑎 = 𝑡 ∧ 𝑥 = 𝑤) → 𝑡 = 𝑢) |
| 11 | 10 | subsucc-P5 644 |
. . . 4
⊢ ((𝑎 = 𝑡 ∧ 𝑥 = 𝑤) →
s‘𝑡 = s‘𝑢) |
| 12 | 11 | subeqr-P5 635 |
. . 3
⊢ ((𝑎 = 𝑡 ∧ 𝑥 = 𝑤) →
(𝑏 = s‘𝑡 ↔ 𝑏 =
s‘𝑢)) |
| 13 | 12 | rcp-NDIMI2 224 |
. 2
⊢ (𝑎 = 𝑡 → (𝑥 = 𝑤 → (𝑏 = s‘𝑡
↔ 𝑏 = s‘𝑢))) |
| 14 | | axL6ex-P5 625 |
. 2
⊢ ∃𝑎 𝑎 = 𝑡 |
| 15 | 13, 14 | exiav-P5.SH 616 |
1
⊢ (𝑥 = 𝑤 → (𝑏 = s‘𝑡
↔ 𝑏 = s‘𝑢)) |