| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > axL6ex-P5 | |||
| Description: Existential Form of ax-L6 18. |
| Ref | Expression |
|---|---|
| axL6ex-P5 | ⊢ ∃𝑥 𝑥 = 𝑡 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L6 18 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑡 | |
| 2 | df-exists-D5.1 596 | . 2 ⊢ (∃𝑥 𝑥 = 𝑡 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑡) | |
| 3 | 1, 2 | bimpr-P4.RC 534 | 1 ⊢ ∃𝑥 𝑥 = 𝑡 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 ¬ wff-neg 9 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-L6 18 |
| This theorem depends on definitions: df-bi-D2.1 107 df-true-D2.4 155 df-exists-D5.1 596 |
| This theorem is referenced by: eqref-P5 626 lemma-L5.02a 653 solvesub-P6a 704 eqmiddle-P6 708 exi-P6 718 exipsub-P6 720 lemma-L6.02a 726 lemma-L6.04a 749 lemma-L6.07a-L2 771 spliteq-P6 776 splitelof-P6 778 nfrsucc-P6 780 nfradd-P6 781 nfrmult-P6 782 psubnfr-P6 784 psubsuccv-P6-L1 805 psubaddv-P6-L1 807 psubmultv-P6-L1 809 |
| Copyright terms: Public domain | W3C validator |