PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqmiddle-P6

Theorem eqmiddle-P6 708
Description: Introduce Intermediate Middle Variable from Equality.

'𝑦' cannot occur in either '𝛾' or '𝑡'.

Hypothesis
Ref Expression
eqmiddle-P6.1 (𝛾𝑥 = 𝑡)
Assertion
Ref Expression
eqmiddle-P6 (𝛾 → ∃𝑦(𝑥 = 𝑦𝑦 = 𝑡))
Distinct variable groups:   𝛾,𝑦   𝑡,𝑦   𝑥,𝑦

Proof of Theorem eqmiddle-P6
StepHypRef Expression
1 axL6ex-P5 625 . . 3 𝑦 𝑦 = 𝑡
21rcp-NDIMP0addall 207 . 2 (𝛾 → ∃𝑦 𝑦 = 𝑡)
3 eqmiddle-P6.1 . . . . . . 7 (𝛾𝑥 = 𝑡)
43rcp-NDIMP1add1 208 . . . . . 6 ((𝛾𝑦 = 𝑡) → 𝑥 = 𝑡)
5 rcp-NDASM2of2 194 . . . . . . 7 ((𝛾𝑦 = 𝑡) → 𝑦 = 𝑡)
65subeqr-P5 635 . . . . . 6 ((𝛾𝑦 = 𝑡) → (𝑥 = 𝑦𝑥 = 𝑡))
74, 6bimpr-P4 533 . . . . 5 ((𝛾𝑦 = 𝑡) → 𝑥 = 𝑦)
87, 5ndandi-P3.7 172 . . . 4 ((𝛾𝑦 = 𝑡) → (𝑥 = 𝑦𝑦 = 𝑡))
98rcp-NDIMI2 224 . . 3 (𝛾 → (𝑦 = 𝑡 → (𝑥 = 𝑦𝑦 = 𝑡)))
109alloverimex-P5.GENV 622 . 2 (𝛾 → (∃𝑦 𝑦 = 𝑡 → ∃𝑦(𝑥 = 𝑦𝑦 = 𝑡)))
112, 10ndime-P3.6 171 1 (𝛾 → ∃𝑦(𝑥 = 𝑦𝑦 = 𝑡))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  eqmiddle-P6.CL  709
  Copyright terms: Public domain W3C validator