| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > eqmiddle-P6 | |||
| Description: Introduce Intermediate
Middle Variable from Equality.
'𝑦' cannot occur in either '𝛾' or '𝑡'. |
| Ref | Expression |
|---|---|
| eqmiddle-P6.1 | ⊢ (𝛾 → 𝑥 = 𝑡) |
| Ref | Expression |
|---|---|
| eqmiddle-P6 | ⊢ (𝛾 → ∃𝑦(𝑥 = 𝑦 ∧ 𝑦 = 𝑡)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axL6ex-P5 625 | . . 3 ⊢ ∃𝑦 𝑦 = 𝑡 | |
| 2 | 1 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → ∃𝑦 𝑦 = 𝑡) |
| 3 | eqmiddle-P6.1 | . . . . . . 7 ⊢ (𝛾 → 𝑥 = 𝑡) | |
| 4 | 3 | rcp-NDIMP1add1 208 | . . . . . 6 ⊢ ((𝛾 ∧ 𝑦 = 𝑡) → 𝑥 = 𝑡) |
| 5 | rcp-NDASM2of2 194 | . . . . . . 7 ⊢ ((𝛾 ∧ 𝑦 = 𝑡) → 𝑦 = 𝑡) | |
| 6 | 5 | subeqr-P5 635 | . . . . . 6 ⊢ ((𝛾 ∧ 𝑦 = 𝑡) → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) |
| 7 | 4, 6 | bimpr-P4 533 | . . . . 5 ⊢ ((𝛾 ∧ 𝑦 = 𝑡) → 𝑥 = 𝑦) |
| 8 | 7, 5 | ndandi-P3.7 172 | . . . 4 ⊢ ((𝛾 ∧ 𝑦 = 𝑡) → (𝑥 = 𝑦 ∧ 𝑦 = 𝑡)) |
| 9 | 8 | rcp-NDIMI2 224 | . . 3 ⊢ (𝛾 → (𝑦 = 𝑡 → (𝑥 = 𝑦 ∧ 𝑦 = 𝑡))) |
| 10 | 9 | alloverimex-P5.GENV 622 | . 2 ⊢ (𝛾 → (∃𝑦 𝑦 = 𝑡 → ∃𝑦(𝑥 = 𝑦 ∧ 𝑦 = 𝑡))) |
| 11 | 2, 10 | ndime-P3.6 171 | 1 ⊢ (𝛾 → ∃𝑦(𝑥 = 𝑦 ∧ 𝑦 = 𝑡)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 → wff-imp 10 ∧ wff-and 132 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: eqmiddle-P6.CL 709 |
| Copyright terms: Public domain | W3C validator |