PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bimpr-P4

Theorem bimpr-P4 533
Description: Modus Ponens with '' (reverse).
Hypotheses
Ref Expression
bimpr-P4.1 (𝛾𝜓)
bimpr-P4.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
bimpr-P4 (𝛾𝜑)

Proof of Theorem bimpr-P4
StepHypRef Expression
1 bimpr-P4.1 . 2 (𝛾𝜓)
2 bimpr-P4.2 . . 3 (𝛾 → (𝜑𝜓))
32ndbier-P3.15 180 . 2 (𝛾 → (𝜓𝜑))
41, 3ndime-P3.6 171 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bimpr-P4.RC  534  eqmiddle-P6  708  example-E7.1a  1074
  Copyright terms: Public domain W3C validator