PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqmiddle-P6.CL

Theorem eqmiddle-P6.CL 709
Description: Closed Form of eqmiddle-P6 708.

'𝑦' cannot occur in '𝑡'.

Assertion
Ref Expression
eqmiddle-P6.CL (𝑥 = 𝑡 → ∃𝑦(𝑥 = 𝑦𝑦 = 𝑡))
Distinct variable groups:   𝑡,𝑦   𝑥,𝑦

Proof of Theorem eqmiddle-P6.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝑥 = 𝑡𝑥 = 𝑡)
21eqmiddle-P6 708 1 (𝑥 = 𝑡 → ∃𝑦(𝑥 = 𝑦𝑦 = 𝑡))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  trnsvsubw-P6  710  trnsvsub-P6  763
  Copyright terms: Public domain W3C validator