PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsvsubw-P6

Theorem trnsvsubw-P6 710
Description: Transitive Dummy Variable Substitution (weakened form).

Requires the existence of '𝜒₁(𝑦₁)' as a replacement for '𝜒(𝑦)'. Also, neither '𝑦' nor '𝑦₁' can occur in '𝜑' and '𝑦' cannot occur in '𝑡'.

Hypotheses
Ref Expression
trnsvsubw-P6.1 𝑦𝜒
trnsvsubw-P6.2 (𝑦 = 𝑦₁ → (𝜒𝜒₁))
trnsvsubw-P6.3 (𝑥 = 𝑦 → (𝜑𝜓))
trnsvsubw-P6.4 (𝑦 = 𝑡 → (𝜓𝜒))
Assertion
Ref Expression
trnsvsubw-P6 (𝑥 = 𝑡 → (𝜑𝜒))
Distinct variable groups:   𝜒,𝑦₁   𝜒₁,𝑦   𝜑,𝑦,𝑦₁   𝑡,𝑦   𝑥,𝑦,𝑦₁

Proof of Theorem trnsvsubw-P6
StepHypRef Expression
1 eqmiddle-P6.CL 709 . 2 (𝑥 = 𝑡 → ∃𝑦(𝑥 = 𝑦𝑦 = 𝑡))
2 trnsvsubw-P6.3 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
3 trnsvsubw-P6.4 . . . . 5 (𝑦 = 𝑡 → (𝜓𝜒))
42, 3joinimandres2-P4.RC 581 . . . 4 ((𝑥 = 𝑦𝑦 = 𝑡) → ((𝜑𝜓) ∧ (𝜓𝜒)))
5 bitrns-P3.33c.CL 304 . . . 4 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
64, 5syl-P3.24.RC 260 . . 3 ((𝑥 = 𝑦𝑦 = 𝑡) → (𝜑𝜒))
76alloverimex-P5.RC.GEN 603 . 2 (∃𝑦(𝑥 = 𝑦𝑦 = 𝑡) → ∃𝑦(𝜑𝜒))
8 trnsvsubw-P6.2 . . . 4 (𝑦 = 𝑦₁ → (𝜒𝜒₁))
98subbir-P3.41b 334 . . 3 (𝑦 = 𝑦₁ → ((𝜑𝜒) ↔ (𝜑𝜒₁)))
10 nfrv-P6 686 . . . 4 𝑦𝜑
11 trnsvsubw-P6.1 . . . 4 𝑦𝜒
1210, 11nfrbi-P6 691 . . 3 𝑦(𝜑𝜒)
139, 12nfrexgenw-P6 696 . 2 (∃𝑦(𝜑𝜒) → (𝜑𝜒))
141, 7, 13dsyl-P3.25.RC 262 1 (𝑥 = 𝑡 → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  solvedsub-P6b  713
  Copyright terms: Public domain W3C validator