| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > trnsvsubw-P6 | |||
| Description: Transitive Dummy Variable
Substitution (weakened form).
Requires the existence of '𝜒₁(𝑦₁)' as a replacement for '𝜒(𝑦)'. Also, neither '𝑦' nor '𝑦₁' can occur in '𝜑' and '𝑦' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| trnsvsubw-P6.1 | ⊢ Ⅎ𝑦𝜒 |
| trnsvsubw-P6.2 | ⊢ (𝑦 = 𝑦₁ → (𝜒 ↔ 𝜒₁)) |
| trnsvsubw-P6.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| trnsvsubw-P6.4 | ⊢ (𝑦 = 𝑡 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| trnsvsubw-P6 | ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqmiddle-P6.CL 709 | . 2 ⊢ (𝑥 = 𝑡 → ∃𝑦(𝑥 = 𝑦 ∧ 𝑦 = 𝑡)) | |
| 2 | trnsvsubw-P6.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | trnsvsubw-P6.4 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | joinimandres2-P4.RC 581 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑡) → ((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒))) |
| 5 | bitrns-P3.33c.CL 304 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) | |
| 6 | 4, 5 | syl-P3.24.RC 260 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑡) → (𝜑 ↔ 𝜒)) |
| 7 | 6 | alloverimex-P5.RC.GEN 603 | . 2 ⊢ (∃𝑦(𝑥 = 𝑦 ∧ 𝑦 = 𝑡) → ∃𝑦(𝜑 ↔ 𝜒)) |
| 8 | trnsvsubw-P6.2 | . . . 4 ⊢ (𝑦 = 𝑦₁ → (𝜒 ↔ 𝜒₁)) | |
| 9 | 8 | subbir-P3.41b 334 | . . 3 ⊢ (𝑦 = 𝑦₁ → ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜒₁))) |
| 10 | nfrv-P6 686 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 11 | trnsvsubw-P6.1 | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 12 | 10, 11 | nfrbi-P6 691 | . . 3 ⊢ Ⅎ𝑦(𝜑 ↔ 𝜒) |
| 13 | 9, 12 | nfrexgenw-P6 696 | . 2 ⊢ (∃𝑦(𝜑 ↔ 𝜒) → (𝜑 ↔ 𝜒)) |
| 14 | 1, 7, 13 | dsyl-P3.25.RC 262 | 1 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: solvedsub-P6b 713 |
| Copyright terms: Public domain | W3C validator |