PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bitrns-P3.33c.CL

Theorem bitrns-P3.33c.CL 304
Description: Closed Form of bitrns-P3.33c 302.
Assertion
Ref Expression
bitrns-P3.33c.CL (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))

Proof of Theorem bitrns-P3.33c.CL
StepHypRef Expression
1 rcp-NDASM1of2 193 . 2 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜓))
2 rcp-NDASM2of2 194 . 2 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜓𝜒))
31, 2bitrns-P3.33c 302 1 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  trnsvsubw-P6  710  trnsvsub-P6  763
  Copyright terms: Public domain W3C validator