PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  import-P3.34a

Theorem import-P3.34a 305
Description: '' Importation Law.
Hypothesis
Ref Expression
import-P3.34a.1 (𝛾 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
import-P3.34a (𝛾 → ((𝜑𝜓) → 𝜒))

Proof of Theorem import-P3.34a
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 ((𝛾 ∧ (𝜑𝜓)) → (𝜑𝜓))
21ndandel-P3.8 173 . . 3 ((𝛾 ∧ (𝜑𝜓)) → 𝜓)
31ndander-P3.9 174 . . . 4 ((𝛾 ∧ (𝜑𝜓)) → 𝜑)
4 import-P3.34a.1 . . . . 5 (𝛾 → (𝜑 → (𝜓𝜒)))
54rcp-NDIMP1add1 208 . . . 4 ((𝛾 ∧ (𝜑𝜓)) → (𝜑 → (𝜓𝜒)))
63, 5ndime-P3.6 171 . . 3 ((𝛾 ∧ (𝜑𝜓)) → (𝜓𝜒))
72, 6ndime-P3.6 171 . 2 ((𝛾 ∧ (𝜑𝜓)) → 𝜒)
87rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜓) → 𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  import-P3.34a.RC  306
  Copyright terms: Public domain W3C validator