PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  solvedsub-P6b

Theorem solvedsub-P6b 713
Description: solvedsub-P6a 711 with result substituted back into hypothesis.

Requires the existence of '𝜓₁(𝑥₁)' as a replacement for '𝜓(𝑥)' and '𝜒₁(𝑦₁)' as a replacement for '𝜒(𝑦)'. Also, neither '𝑦' nor '𝑦₁' can occur in '𝜑' and '𝑦' cannot occur in '𝑡'.

Note that trnsvsubw-P6 710 must be used to show that '(𝑥 = 𝑡 → (𝜑𝜒))', and from there we can substitute the explicit formula from solvedsub-P6a 711 for '𝜒'.

Hypotheses
Ref Expression
solvedsub-P6b.1 (𝑥 = 𝑥₁ → (𝜓𝜓₁))
solvedsub-P6b.2 𝑥𝜓
solvedsub-P6b.3 (𝑦 = 𝑦₁ → (𝜒𝜒₁))
solvedsub-P6b.4 𝑦𝜒
solvedsub-P6b.5 (𝑥 = 𝑦 → (𝜑𝜓))
solvedsub-P6b.6 (𝑦 = 𝑡 → (𝜓𝜒))
Assertion
Ref Expression
solvedsub-P6b (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
Distinct variable groups:   𝜓,𝑥₁   𝜓₁,𝑥   𝜒,𝑦₁   𝜒₁,𝑦   𝜑,𝑦,𝑦₁   𝑡,𝑦   𝑥,𝑥₁,𝑦,𝑦₁

Proof of Theorem solvedsub-P6b
StepHypRef Expression
1 solvedsub-P6b.4 . . 3 𝑦𝜒
2 solvedsub-P6b.3 . . 3 (𝑦 = 𝑦₁ → (𝜒𝜒₁))
3 solvedsub-P6b.5 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
4 solvedsub-P6b.6 . . 3 (𝑦 = 𝑡 → (𝜓𝜒))
51, 2, 3, 4trnsvsubw-P6 710 . 2 (𝑥 = 𝑡 → (𝜑𝜒))
6 solvedsub-P6b.1 . . . 4 (𝑥 = 𝑥₁ → (𝜓𝜓₁))
7 solvedsub-P6b.2 . . . 4 𝑥𝜓
86, 7, 2, 1, 3, 4solvedsub-P6a 711 . . 3 (𝜒 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
98subbir-P3.41b.RC 335 . 2 ((𝜑𝜒) ↔ (𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
105, 9subimr2-P4.RC 543 1 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator