PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E6.02a

Theorem example-E6.02a 712
Description: Eliminating Hypothesis to solvedsub-P6a 711.

In this example we replace '𝑏' in 𝜑 with '(𝑥𝑏)'. Because '𝑏' occurs in the term '(𝑥𝑏)', we first replace '𝑏' with '𝑐' to obtain '𝜓'. Because '𝑥' is a bound variable in '𝜑', we again use cbvallv-P5 659 to change the bound variable '𝑥' to '𝑦' so as not to conflict with the substituted term, '(𝑥𝑏)'. The WFF metavariables '𝜑', '𝜓', and '𝜒' defined as hypotheses, exist only to make this example easier to follow. It is easy to locate the important steps, which are...

'𝑏𝜓',

'𝑐𝜒,

'(𝑏 = 𝑐 → (𝜑𝜓))',

and '(𝑐 = (𝑥𝑏)) → (𝜓𝜒))'.

Hypotheses
Ref Expression
example-E6.02a.1 (𝑏 = 𝑏₁ → (𝜓𝜓₁))
example-E6.02a.2 (𝑐 = 𝑐₁ → (𝜒𝜒₁))
example-E6.02a.3 (𝜑 ↔ ∃𝑥 𝑏 = (𝑥𝑎))
example-E6.02a.4 (𝜓 ↔ ∃𝑥 𝑐 = (𝑥𝑎))
example-E6.02a.5 (𝜒 ↔ ∃𝑦 (𝑥𝑏) = (𝑦𝑎))
Assertion
Ref Expression
example-E6.02a (𝜒 ↔ ∀𝑐(𝑐 = (𝑥𝑏) → ∀𝑏(𝑏 = 𝑐𝜑)))
Distinct variable groups:   𝜓,𝑏₁   𝜓₁,𝑏   𝜒,𝑐₁   𝜒₁,𝑐   𝑎,𝑏,𝑏₁,𝑐,𝑐₁,𝑥,𝑦

Proof of Theorem example-E6.02a
StepHypRef Expression
1 example-E6.02a.1 . 2 (𝑏 = 𝑏₁ → (𝜓𝜓₁))
2 nfrv-P6 686 . . 3 𝑏𝑥 𝑐 = (𝑥𝑎)
3 example-E6.02a.4 . . . . 5 (𝜓 ↔ ∃𝑥 𝑐 = (𝑥𝑎))
43bisym-P3.33b.RC 299 . . . 4 (∃𝑥 𝑐 = (𝑥𝑎) ↔ 𝜓)
54nfrleq-P6 687 . . 3 (Ⅎ𝑏𝑥 𝑐 = (𝑥𝑎) ↔ Ⅎ𝑏𝜓)
62, 5bimpf-P4.RC 532 . 2 𝑏𝜓
7 example-E6.02a.2 . 2 (𝑐 = 𝑐₁ → (𝜒𝜒₁))
8 nfrv-P6 686 . . 3 𝑐𝑦 (𝑥𝑏) = (𝑦𝑎)
9 example-E6.02a.5 . . . . 5 (𝜒 ↔ ∃𝑦 (𝑥𝑏) = (𝑦𝑎))
109bisym-P3.33b.RC 299 . . . 4 (∃𝑦 (𝑥𝑏) = (𝑦𝑎) ↔ 𝜒)
1110nfrleq-P6 687 . . 3 (Ⅎ𝑐𝑦 (𝑥𝑏) = (𝑦𝑎) ↔ Ⅎ𝑐𝜒)
128, 11bimpf-P4.RC 532 . 2 𝑐𝜒
13 subeql-P5.CL 633 . . . 4 (𝑏 = 𝑐 → (𝑏 = (𝑥𝑎) ↔ 𝑐 = (𝑥𝑎)))
1413subexv-P5 624 . . 3 (𝑏 = 𝑐 → (∃𝑥 𝑏 = (𝑥𝑎) ↔ ∃𝑥 𝑐 = (𝑥𝑎)))
15 example-E6.02a.3 . . . . 5 (𝜑 ↔ ∃𝑥 𝑏 = (𝑥𝑎))
1615bisym-P3.33b.RC 299 . . . 4 (∃𝑥 𝑏 = (𝑥𝑎) ↔ 𝜑)
1716, 4subbid-P3.41c.RC 337 . . 3 ((∃𝑥 𝑏 = (𝑥𝑎) ↔ ∃𝑥 𝑐 = (𝑥𝑎)) ↔ (𝜑𝜓))
1814, 17subimr2-P4.RC 543 . 2 (𝑏 = 𝑐 → (𝜑𝜓))
19 ax-L9-multl 25 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑎) = (𝑦𝑎))
2019subeqr-P5 635 . . . . . 6 (𝑥 = 𝑦 → (𝑐 = (𝑥𝑎) ↔ 𝑐 = (𝑦𝑎)))
2120cbvexv-P5 660 . . . . 5 (∃𝑥 𝑐 = (𝑥𝑎) ↔ ∃𝑦 𝑐 = (𝑦𝑎))
2221rcp-NDIMP0addall 207 . . . 4 (𝑐 = (𝑥𝑏) → (∃𝑥 𝑐 = (𝑥𝑎) ↔ ∃𝑦 𝑐 = (𝑦𝑎)))
23 subeql-P5.CL 633 . . . . 5 (𝑐 = (𝑥𝑏) → (𝑐 = (𝑦𝑎) ↔ (𝑥𝑏) = (𝑦𝑎)))
2423subexv-P5 624 . . . 4 (𝑐 = (𝑥𝑏) → (∃𝑦 𝑐 = (𝑦𝑎) ↔ ∃𝑦 (𝑥𝑏) = (𝑦𝑎)))
2522, 24bitrns-P3.33c 302 . . 3 (𝑐 = (𝑥𝑏) → (∃𝑥 𝑐 = (𝑥𝑎) ↔ ∃𝑦 (𝑥𝑏) = (𝑦𝑎)))
264, 10subbid-P3.41c.RC 337 . . 3 ((∃𝑥 𝑐 = (𝑥𝑎) ↔ ∃𝑦 (𝑥𝑏) = (𝑦𝑎)) ↔ (𝜓𝜒))
2725, 26subimr2-P4.RC 543 . 2 (𝑐 = (𝑥𝑏) → (𝜓𝜒))
281, 6, 7, 12, 18, 27solvedsub-P6a 711 1 (𝜒 ↔ ∀𝑐(𝑐 = (𝑥𝑏) → ∀𝑏(𝑏 = 𝑐𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  term-mult 5   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-multl 25
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator