PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subeql-P5.CL

Theorem subeql-P5.CL 633
Description: Closed Form of subeql-P5 632.
Assertion
Ref Expression
subeql-P5.CL (𝑡 = 𝑢 → (𝑡 = 𝑤𝑢 = 𝑤))

Proof of Theorem subeql-P5.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝑡 = 𝑢𝑡 = 𝑢)
21subeql-P5 632 1 (𝑡 = 𝑢 → (𝑡 = 𝑤𝑢 = 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  example-E6.02a  712  psubjust-P6  715  nfrterm-P6  779
  Copyright terms: Public domain W3C validator