| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubjust-P6 | |||
| Description: Justification Theorem for
df-psub-D6.2 716.
'𝑦' and '𝑧' are distinct from all other variables. |
| Ref | Expression |
|---|---|
| psubjust-P6 | ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑦 = 𝑥 → 𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑧 = 𝑥 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subeql-P5.CL 633 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝑡 ↔ 𝑧 = 𝑡)) | |
| 2 | subeql-P5.CL 633 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝑥 ↔ 𝑧 = 𝑥)) | |
| 3 | 2 | subiml-P3.40a 325 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑦 = 𝑥 → 𝜑) ↔ (𝑧 = 𝑥 → 𝜑))) |
| 4 | 3 | suballv-P5 623 | . . 3 ⊢ (𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑥 → 𝜑) ↔ ∀𝑥(𝑧 = 𝑥 → 𝜑))) |
| 5 | 1, 4 | subimd-P3.40c 329 | . 2 ⊢ (𝑦 = 𝑧 → ((𝑦 = 𝑡 → ∀𝑥(𝑦 = 𝑥 → 𝜑)) ↔ (𝑧 = 𝑡 → ∀𝑥(𝑧 = 𝑥 → 𝜑)))) |
| 6 | 5 | cbvallv-P5 659 | 1 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑦 = 𝑥 → 𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑧 = 𝑥 → 𝜑))) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |