PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubjust-P6

Theorem psubjust-P6 715
Description: Justification Theorem for df-psub-D6.2 716.

'𝑦' and '𝑧' are distinct from all other variables.

Assertion
Ref Expression
psubjust-P6 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑦 = 𝑥𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑧 = 𝑥𝜑)))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑡,𝑦,𝑧   𝑥,𝑦,𝑧

Proof of Theorem psubjust-P6
StepHypRef Expression
1 subeql-P5.CL 633 . . 3 (𝑦 = 𝑧 → (𝑦 = 𝑡𝑧 = 𝑡))
2 subeql-P5.CL 633 . . . . 5 (𝑦 = 𝑧 → (𝑦 = 𝑥𝑧 = 𝑥))
32subiml-P3.40a 325 . . . 4 (𝑦 = 𝑧 → ((𝑦 = 𝑥𝜑) ↔ (𝑧 = 𝑥𝜑)))
43suballv-P5 623 . . 3 (𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑥𝜑) ↔ ∀𝑥(𝑧 = 𝑥𝜑)))
51, 4subimd-P3.40c 329 . 2 (𝑦 = 𝑧 → ((𝑦 = 𝑡 → ∀𝑥(𝑦 = 𝑥𝜑)) ↔ (𝑧 = 𝑡 → ∀𝑥(𝑧 = 𝑥𝜑))))
65cbvallv-P5 659 1 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑦 = 𝑥𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑧 = 𝑥𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator