PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subiml-P3.40a

Theorem subiml-P3.40a 325
Description: Left Substitution Law for ''.
Hypothesis
Ref Expression
subiml-P3.40a.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subiml-P3.40a (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem subiml-P3.40a
StepHypRef Expression
1 subiml-P3.40a.1 . . . 4 (𝛾 → (𝜑𝜓))
21ndbier-P3.15 180 . . 3 (𝛾 → (𝜓𝜑))
32imsubl-P3.28a 267 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
41ndbief-P3.14 179 . . 3 (𝛾 → (𝜑𝜓))
54imsubl-P3.28a 267 . 2 (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
63, 5ndbii-P3.13 178 1 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subiml-P3.40a.RC  326  subiml2-P4  540  example-E5.04a  675  example-E6.01a  706  psubjust-P6  715  dfpsubv-P6  717
  Copyright terms: Public domain W3C validator