PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfpsubv-P6

Theorem dfpsubv-P6 717
Description: Simplified Definition of Proper Substitution (restriction on '𝑡').

This form can be used whenever '𝑥' does not occur in '𝑡'.

Assertion
Ref Expression
dfpsubv-P6 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
Distinct variable group:   𝑡,𝑥

Proof of Theorem dfpsubv-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-psub-D6.2 716 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 subeqr-P5.CL 636 . . . . . 6 (𝑦 = 𝑡 → (𝑥 = 𝑦𝑥 = 𝑡))
32subiml-P3.40a 325 . . . . 5 (𝑦 = 𝑡 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑡𝜑)))
43suballv-P5 623 . . . 4 (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
54solvesub-P6a.VR 705 . . 3 (∀𝑥(𝑥 = 𝑡𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
65bisym-P3.33b.RC 299 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑥(𝑥 = 𝑡𝜑))
71, 6bitrns-P3.33c.RC 303 1 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubtoisubv-P6  725  isubtopsubv-P6  727  lemma-L6.06a  766
  Copyright terms: Public domain W3C validator