PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  solvesub-P6a.VR

Theorem solvesub-P6a.VR 705
Description: Variable Restricted Form of solvesub-P6a 704.

'𝑥' cannot occur in either '𝜓' or '𝑡'.

If we know '𝑥' does not occur in '𝜓' ahead of time, we can remove some of the hypotheses.

Hypothesis
Ref Expression
solvesub-P6a.VR.1 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
solvesub-P6a.VR (𝜓 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
Distinct variable groups:   𝜓,𝑥   𝑡,𝑥

Proof of Theorem solvesub-P6a.VR
Dummy variable 𝑥₁ is distinct from all other variables.
StepHypRef Expression
1 biref-P3.33a 297 . . 3 (𝜓𝜓)
21rcp-NDIMP0addall 207 . 2 (𝑥 = 𝑥₁ → (𝜓𝜓))
3 nfrv-P6 686 . 2 𝑥𝜓
4 solvesub-P6a.VR.1 . 2 (𝑥 = 𝑡 → (𝜑𝜓))
52, 3, 4solvesub-P6a 704 1 (𝜓 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  dfpsubv-P6  717
  Copyright terms: Public domain W3C validator