PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E5.04a

Theorem example-E5.04a 675
Description: Convert Axiom of Replacement to Prenex Form.

The hypothesis imples we can construct an alternate function, '𝜑₂'. We first replace '𝑥' with '𝑥₁' in '𝜑' to obtain '𝜑₁', then we replace '𝑦' with '𝑦₁' in '𝜑₁' to obtain '𝜑₂'.

Since '𝑥₁' and '𝑦₁' are fresh variables replacing '𝑥' and '𝑦', we need the disjoint variable conditions...

$d 𝜑 𝑥₁ 𝑦₁ $. $d 𝜑₁ 𝑥 𝑦₁ $. $d 𝜑₂ 𝑥 𝑦 $.

The other condition, that neither '𝑧' nor '𝑎' should appear in '𝜑' (and by extension '𝜑₁' and '𝜑₂'), is simply part of the hypothesis for with this version of the Axiom of Replacement.

Hypotheses
Ref Expression
example-E5.04a.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
example-E5.04a.2 (𝑦 = 𝑦₁ → (𝜑₁𝜑₂))
example-E5.04a.3 (∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧) → ∃𝑎𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎)))
Assertion
Ref Expression
example-E5.04a 𝑎𝑥𝑦𝑥₁𝑧𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎)))
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝜑₂,𝑥   𝜑,𝑦₁   𝜑₁,𝑦₁   𝜑₂,𝑦   𝜑,𝑧,𝑎   𝜑₁,𝑧,𝑎   𝜑₂,𝑧,𝑎   𝑥,𝑥₁,𝑦,𝑦₁,𝑧,𝑎,𝑏

Proof of Theorem example-E5.04a
StepHypRef Expression
1 example-E5.04a.3 . . . . . . . 8 (∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧) → ∃𝑎𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎)))
2 example-E5.04a.1 . . . . . . . . . . . . 13 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
32subiml-P3.40a 325 . . . . . . . . . . . 12 (𝑥 = 𝑥₁ → ((𝜑𝑦 = 𝑧) ↔ (𝜑₁𝑦 = 𝑧)))
43suballv-P5 623 . . . . . . . . . . 11 (𝑥 = 𝑥₁ → (∀𝑦(𝜑𝑦 = 𝑧) ↔ ∀𝑦(𝜑₁𝑦 = 𝑧)))
54subexv-P5 624 . . . . . . . . . 10 (𝑥 = 𝑥₁ → (∃𝑧𝑦(𝜑𝑦 = 𝑧) ↔ ∃𝑧𝑦(𝜑₁𝑦 = 𝑧)))
65cbvallv-P5 659 . . . . . . . . 9 (∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧) ↔ ∀𝑥₁𝑧𝑦(𝜑₁𝑦 = 𝑧))
7 example-E5.04a.2 . . . . . . . . . . . . 13 (𝑦 = 𝑦₁ → (𝜑₁𝜑₂))
8 rcp-NDASM1of1 192 . . . . . . . . . . . . . 14 (𝑦 = 𝑦₁𝑦 = 𝑦₁)
98subeql-P5 632 . . . . . . . . . . . . 13 (𝑦 = 𝑦₁ → (𝑦 = 𝑧𝑦₁ = 𝑧))
107, 9subimd-P3.40c 329 . . . . . . . . . . . 12 (𝑦 = 𝑦₁ → ((𝜑₁𝑦 = 𝑧) ↔ (𝜑₂𝑦₁ = 𝑧)))
1110cbvallv-P5 659 . . . . . . . . . . 11 (∀𝑦(𝜑₁𝑦 = 𝑧) ↔ ∀𝑦₁(𝜑₂𝑦₁ = 𝑧))
1211subexinf-P5 608 . . . . . . . . . 10 (∃𝑧𝑦(𝜑₁𝑦 = 𝑧) ↔ ∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧))
1312suballinf-P5 594 . . . . . . . . 9 (∀𝑥₁𝑧𝑦(𝜑₁𝑦 = 𝑧) ↔ ∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧))
146, 13bitrns-P3.33c.RC 303 . . . . . . . 8 (∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧) ↔ ∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧))
151, 14subiml2-P4.RC 541 . . . . . . 7 (∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∃𝑎𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎)))
16 qceximrv-P5 672 . . . . . . 7 ((∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∃𝑎𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑎(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎))))
1715, 16bimpf-P4.RC 532 . . . . . 6 𝑎(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎)))
18 qcallimrv-P5 671 . . . . . . 7 ((∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑥(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑦(𝑥𝑏 → (𝜑𝑦𝑎))))
1918subexinf-P5 608 . . . . . 6 (∃𝑎(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑥𝑦(𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑎𝑥(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑦(𝑥𝑏 → (𝜑𝑦𝑎))))
2017, 19bimpf-P4.RC 532 . . . . 5 𝑎𝑥(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑦(𝑥𝑏 → (𝜑𝑦𝑎)))
21 qcallimrv-P5 671 . . . . . . 7 ((∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑦(𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑦(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
2221suballinf-P5 594 . . . . . 6 (∀𝑥(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑦(𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑥𝑦(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
2322subexinf-P5 608 . . . . 5 (∃𝑎𝑥(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → ∀𝑦(𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑎𝑥𝑦(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
2420, 23bimpf-P4.RC 532 . . . 4 𝑎𝑥𝑦(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎)))
25 qcallimlv-P5 673 . . . . . . 7 ((∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
2625suballinf-P5 594 . . . . . 6 (∀𝑦(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑦𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
2726suballinf-P5 594 . . . . 5 (∀𝑥𝑦(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑥𝑦𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
2827subexinf-P5 608 . . . 4 (∃𝑎𝑥𝑦(∀𝑥₁𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑎𝑥𝑦𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
2924, 28bimpf-P4.RC 532 . . 3 𝑎𝑥𝑦𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎)))
30 qceximlv-P5 674 . . . . . . 7 ((∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3130subexinf-P5 608 . . . . . 6 (∃𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3231suballinf-P5 594 . . . . 5 (∀𝑦𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑦𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3332suballinf-P5 594 . . . 4 (∀𝑥𝑦𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑥𝑦𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3433subexinf-P5 608 . . 3 (∃𝑎𝑥𝑦𝑥₁(∃𝑧𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑎𝑥𝑦𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3529, 34bimpf-P4.RC 532 . 2 𝑎𝑥𝑦𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎)))
36 qcallimlv-P5 673 . . . . . . 7 ((∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3736suballinf-P5 594 . . . . . 6 (∀𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑧𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3837subexinf-P5 608 . . . . 5 (∃𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑥₁𝑧𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
3938suballinf-P5 594 . . . 4 (∀𝑦𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑦𝑥₁𝑧𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
4039suballinf-P5 594 . . 3 (∀𝑥𝑦𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∀𝑥𝑦𝑥₁𝑧𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
4140subexinf-P5 608 . 2 (∃𝑎𝑥𝑦𝑥₁𝑧(∀𝑦₁(𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))) ↔ ∃𝑎𝑥𝑦𝑥₁𝑧𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎))))
4235, 41bimpf-P4.RC 532 1 𝑎𝑥𝑦𝑥₁𝑧𝑦₁((𝜑₂𝑦₁ = 𝑧) → (𝑥𝑏 → (𝜑𝑦𝑎)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-elemof 7  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator