Proof of Theorem example-E5.04a
| Step | Hyp | Ref
| Expression |
| 1 | | example-E5.04a.3 |
. . . . . . . 8
⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑎∀𝑥∀𝑦(𝑥 ∈ 𝑏 →
(𝜑 → 𝑦
∈ 𝑎))) |
| 2 | | example-E5.04a.1 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑥₁
→ (𝜑 ↔ 𝜑₁)) |
| 3 | 2 | subiml-P3.40a 325 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑥₁
→ ((𝜑 → 𝑦 = 𝑧) ↔
(𝜑₁ → 𝑦 = 𝑧))) |
| 4 | 3 | suballv-P5 623 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑥₁
→ (∀𝑦(𝜑 → 𝑦 = 𝑧) ↔ ∀𝑦(𝜑₁ →
𝑦 = 𝑧))) |
| 5 | 4 | subexv-P5 624 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑥₁
→ (∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) ↔
∃𝑧∀𝑦(𝜑₁ →
𝑦 = 𝑧))) |
| 6 | 5 | cbvallv-P5 659 |
. . . . . . . . 9
⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) ↔ ∀𝑥₁∃𝑧∀𝑦(𝜑₁ → 𝑦 =
𝑧)) |
| 7 | | example-E5.04a.2 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑦₁
→ (𝜑₁ ↔ 𝜑₂)) |
| 8 | | rcp-NDASM1of1 192 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑦₁
→ 𝑦 = 𝑦₁) |
| 9 | 8 | subeql-P5 632 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑦₁
→ (𝑦 = 𝑧 ↔ 𝑦₁ = 𝑧)) |
| 10 | 7, 9 | subimd-P3.40c 329 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑦₁
→ ((𝜑₁ → 𝑦 = 𝑧) ↔
(𝜑₂ → 𝑦₁ = 𝑧))) |
| 11 | 10 | cbvallv-P5 659 |
. . . . . . . . . . 11
⊢ (∀𝑦(𝜑₁ →
𝑦 = 𝑧)
↔ ∀𝑦₁(𝜑₂ → 𝑦₁ = 𝑧)) |
| 12 | 11 | subexinf-P5 608 |
. . . . . . . . . 10
⊢ (∃𝑧∀𝑦(𝜑₁ → 𝑦 =
𝑧) ↔ ∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧)) |
| 13 | 12 | suballinf-P5 594 |
. . . . . . . . 9
⊢ (∀𝑥₁∃𝑧∀𝑦(𝜑₁ → 𝑦 =
𝑧) ↔ ∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧)) |
| 14 | 6, 13 | bitrns-P3.33c.RC 303 |
. . . . . . . 8
⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) ↔ ∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧)) |
| 15 | 1, 14 | subiml2-P4.RC 541 |
. . . . . . 7
⊢ (∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∃𝑎∀𝑥∀𝑦(𝑥 ∈ 𝑏 →
(𝜑 → 𝑦
∈ 𝑎))) |
| 16 | | qceximrv-P5 672 |
. . . . . . 7
⊢ ((∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∃𝑎∀𝑥∀𝑦(𝑥 ∈ 𝑏 →
(𝜑 → 𝑦
∈ 𝑎))) ↔ ∃𝑎(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑥∀𝑦(𝑥 ∈ 𝑏 →
(𝜑 → 𝑦
∈ 𝑎)))) |
| 17 | 15, 16 | bimpf-P4.RC 532 |
. . . . . 6
⊢ ∃𝑎(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑥∀𝑦(𝑥 ∈ 𝑏 →
(𝜑 → 𝑦
∈ 𝑎))) |
| 18 | | qcallimrv-P5 671 |
. . . . . . 7
⊢ ((∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑥∀𝑦(𝑥 ∈ 𝑏 →
(𝜑 → 𝑦
∈ 𝑎))) ↔ ∀𝑥(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑦(𝑥 ∈ 𝑏 → (𝜑 →
𝑦 ∈ 𝑎)))) |
| 19 | 18 | subexinf-P5 608 |
. . . . . 6
⊢ (∃𝑎(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑥∀𝑦(𝑥 ∈ 𝑏 →
(𝜑 → 𝑦
∈ 𝑎))) ↔ ∃𝑎∀𝑥(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑦(𝑥 ∈ 𝑏 → (𝜑 →
𝑦 ∈ 𝑎)))) |
| 20 | 17, 19 | bimpf-P4.RC 532 |
. . . . 5
⊢ ∃𝑎∀𝑥(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑦(𝑥 ∈ 𝑏 → (𝜑 →
𝑦 ∈ 𝑎))) |
| 21 | | qcallimrv-P5 671 |
. . . . . . 7
⊢ ((∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑦(𝑥 ∈ 𝑏 → (𝜑 →
𝑦 ∈ 𝑎))) ↔ ∀𝑦(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 22 | 21 | suballinf-P5 594 |
. . . . . 6
⊢ (∀𝑥(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑦(𝑥 ∈ 𝑏 → (𝜑 →
𝑦 ∈ 𝑎))) ↔ ∀𝑥∀𝑦(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 23 | 22 | subexinf-P5 608 |
. . . . 5
⊢ (∃𝑎∀𝑥(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → ∀𝑦(𝑥 ∈ 𝑏 → (𝜑 →
𝑦 ∈ 𝑎))) ↔ ∃𝑎∀𝑥∀𝑦(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 24 | 20, 23 | bimpf-P4.RC 532 |
. . . 4
⊢ ∃𝑎∀𝑥∀𝑦(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) |
| 25 | | qcallimlv-P5 673 |
. . . . . . 7
⊢ ((∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 26 | 25 | suballinf-P5 594 |
. . . . . 6
⊢ (∀𝑦(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑦∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 27 | 26 | suballinf-P5 594 |
. . . . 5
⊢ (∀𝑥∀𝑦(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑥∀𝑦∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 28 | 27 | subexinf-P5 608 |
. . . 4
⊢ (∃𝑎∀𝑥∀𝑦(∀𝑥₁∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∃𝑎∀𝑥∀𝑦∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 29 | 24, 28 | bimpf-P4.RC 532 |
. . 3
⊢ ∃𝑎∀𝑥∀𝑦∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) |
| 30 | | qceximlv-P5 674 |
. . . . . . 7
⊢ ((∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 31 | 30 | subexinf-P5 608 |
. . . . . 6
⊢ (∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 32 | 31 | suballinf-P5 594 |
. . . . 5
⊢ (∀𝑦∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑦∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 33 | 32 | suballinf-P5 594 |
. . . 4
⊢ (∀𝑥∀𝑦∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑥∀𝑦∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 34 | 33 | subexinf-P5 608 |
. . 3
⊢ (∃𝑎∀𝑥∀𝑦∃𝑥₁(∃𝑧∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∃𝑎∀𝑥∀𝑦∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 35 | 29, 34 | bimpf-P4.RC 532 |
. 2
⊢ ∃𝑎∀𝑥∀𝑦∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) |
| 36 | | qcallimlv-P5 673 |
. . . . . . 7
⊢ ((∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∃𝑦₁((𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 37 | 36 | suballinf-P5 594 |
. . . . . 6
⊢ (∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑧∃𝑦₁((𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 38 | 37 | subexinf-P5 608 |
. . . . 5
⊢ (∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∃𝑥₁∀𝑧∃𝑦₁((𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 39 | 38 | suballinf-P5 594 |
. . . 4
⊢ (∀𝑦∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑦∃𝑥₁∀𝑧∃𝑦₁((𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 40 | 39 | suballinf-P5 594 |
. . 3
⊢ (∀𝑥∀𝑦∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∀𝑥∀𝑦∃𝑥₁∀𝑧∃𝑦₁((𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 41 | 40 | subexinf-P5 608 |
. 2
⊢ (∃𝑎∀𝑥∀𝑦∃𝑥₁∀𝑧(∀𝑦₁(𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) ↔ ∃𝑎∀𝑥∀𝑦∃𝑥₁∀𝑧∃𝑦₁((𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎)))) |
| 42 | 35, 41 | bimpf-P4.RC 532 |
1
⊢ ∃𝑎∀𝑥∀𝑦∃𝑥₁∀𝑧∃𝑦₁((𝜑₂
→ 𝑦₁ = 𝑧) → (𝑥
∈ 𝑏 → (𝜑 → 𝑦 ∈
𝑎))) |