PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subexinf-P5

Theorem subexinf-P5 608
Description: Inference Version of '𝑥' Substitution Law.

For the deductive form with a variable restriction see subexv-P5 624. For the most general form see subex-P6 754.

Hypothesis
Ref Expression
subexinf-P5.1 (𝜑𝜓)
Assertion
Ref Expression
subexinf-P5 (∃𝑥𝜑 ↔ ∃𝑥𝜓)

Proof of Theorem subexinf-P5
StepHypRef Expression
1 subexinf-P5.1 . . . 4 (𝜑𝜓)
21rcp-NDBIEF0 240 . . 3 (𝜑𝜓)
32alloverimex-P5.RC.GEN 603 . 2 (∃𝑥𝜑 → ∃𝑥𝜓)
41rcp-NDBIER0 241 . . 3 (𝜓𝜑)
54alloverimex-P5.RC.GEN 603 . 2 (∃𝑥𝜓 → ∃𝑥𝜑)
63, 5rcp-NDBII0 239 1 (∃𝑥𝜑 ↔ ∃𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  example-E5.04a  675  exi-P6  718  qcexandr-P6  761  qcexandl-P6  762  psubneg-P6-L1  787  psubspliteq-P6  800  psubsplitelof-P6  801
  Copyright terms: Public domain W3C validator