| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subexinf-P5 | |||
| Description: Inference Version of
'∃𝑥'
Substitution Law.
For the deductive form with a variable restriction see subexv-P5 624. For the most general form see subex-P6 754. |
| Ref | Expression |
|---|---|
| subexinf-P5.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subexinf-P5 | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subexinf-P5.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rcp-NDBIEF0 240 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | alloverimex-P5.RC.GEN 603 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1 | rcp-NDBIER0 241 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | alloverimex-P5.RC.GEN 603 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜑) |
| 6 | 3, 5 | rcp-NDBII0 239 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: example-E5.04a 675 exi-P6 718 qcexandr-P6 761 qcexandl-P6 762 psubneg-P6-L1 787 psubspliteq-P6 800 psubsplitelof-P6 801 |
| Copyright terms: Public domain | W3C validator |