PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubspliteq-P6

Theorem psubspliteq-P6 800
Description: Apply Proper Substitution to Split Equlity.

'𝑎' is distinct from all other variables.

Assertion
Ref Expression
psubspliteq-P6 ([𝑤 / 𝑥] 𝑡 = 𝑢 ↔ ∃𝑎([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑎 = 𝑢))
Distinct variable groups:   𝑡,𝑎   𝑢,𝑎   𝑤,𝑎   𝑥,𝑎

Proof of Theorem psubspliteq-P6
StepHypRef Expression
1 spliteq-P6 776 . . 3 (𝑡 = 𝑢 ↔ ∃𝑎(𝑎 = 𝑡𝑎 = 𝑢))
21psubleq-P6 783 . 2 ([𝑤 / 𝑥] 𝑡 = 𝑢 ↔ [𝑤 / 𝑥]∃𝑎(𝑎 = 𝑡𝑎 = 𝑢))
3 psubex2v-P6 797 . 2 ([𝑤 / 𝑥]∃𝑎(𝑎 = 𝑡𝑎 = 𝑢) ↔ ∃𝑎[𝑤 / 𝑥](𝑎 = 𝑡𝑎 = 𝑢))
4 psuband-P6 792 . . 3 ([𝑤 / 𝑥](𝑎 = 𝑡𝑎 = 𝑢) ↔ ([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑎 = 𝑢))
54subexinf-P5 608 . 2 (∃𝑎[𝑤 / 𝑥](𝑎 = 𝑡𝑎 = 𝑢) ↔ ∃𝑎([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑎 = 𝑢))
62, 3, 5dbitrns-P4.16.RC 429 1 ([𝑤 / 𝑥] 𝑡 = 𝑢 ↔ ∃𝑎([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑎 = 𝑢))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-bi 104  wff-and 132  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator