| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubex2v-P6 | |||
| Description: Proper Substitution Over
Existential Quantifier (different variable -
restriction on '𝑡').
'𝑦' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| psubex2v-P6 | ⊢ ([𝑡 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝑡 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exists-D5.1 596 | . . 3 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | 1 | psubleq-P6 783 | . 2 ⊢ ([𝑡 / 𝑥]∃𝑦𝜑 ↔ [𝑡 / 𝑥] ¬ ∀𝑦 ¬ 𝜑) |
| 3 | psubneg-P6 788 | . 2 ⊢ ([𝑡 / 𝑥] ¬ ∀𝑦 ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]∀𝑦 ¬ 𝜑) | |
| 4 | psuball2v-P6 796 | . . . 4 ⊢ ([𝑡 / 𝑥]∀𝑦 ¬ 𝜑 ↔ ∀𝑦[𝑡 / 𝑥] ¬ 𝜑) | |
| 5 | psubneg-P6 788 | . . . . 5 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑) | |
| 6 | 5 | suballinf-P5 594 | . . . 4 ⊢ (∀𝑦[𝑡 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑) |
| 7 | 4, 6 | bitrns-P3.33c.RC 303 | . . 3 ⊢ ([𝑡 / 𝑥]∀𝑦 ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑) |
| 8 | 7 | subneg-P3.39.RC 324 | . 2 ⊢ (¬ [𝑡 / 𝑥]∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑) |
| 9 | df-exists-D5.1 596 | . . 3 ⊢ (∃𝑦[𝑡 / 𝑥]𝜑 ↔ ¬ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑) | |
| 10 | 9 | bisym-P3.33b.RC 299 | . 2 ⊢ (¬ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑 ↔ ∃𝑦[𝑡 / 𝑥]𝜑) |
| 11 | 2, 3, 8, 10 | tbitrns-P4.17.RC 431 | 1 ⊢ ([𝑡 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝑡 / 𝑥]𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 ↔ wff-bi 104 ∃wff-exists 595 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: psubex2-P6 799 psubspliteq-P6 800 psubsplitelof-P6 801 |
| Copyright terms: Public domain | W3C validator |