PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubex2v-P6

Theorem psubex2v-P6 797
Description: Proper Substitution Over Existential Quantifier (different variable - restriction on '𝑡').

'𝑦' cannot occur in '𝑡'.

Assertion
Ref Expression
psubex2v-P6 ([𝑡 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝑡 / 𝑥]𝜑)
Distinct variable groups:   𝑡,𝑦   𝑥,𝑦

Proof of Theorem psubex2v-P6
StepHypRef Expression
1 df-exists-D5.1 596 . . 3 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
21psubleq-P6 783 . 2 ([𝑡 / 𝑥]∃𝑦𝜑 ↔ [𝑡 / 𝑥] ¬ ∀𝑦 ¬ 𝜑)
3 psubneg-P6 788 . 2 ([𝑡 / 𝑥] ¬ ∀𝑦 ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]∀𝑦 ¬ 𝜑)
4 psuball2v-P6 796 . . . 4 ([𝑡 / 𝑥]∀𝑦 ¬ 𝜑 ↔ ∀𝑦[𝑡 / 𝑥] ¬ 𝜑)
5 psubneg-P6 788 . . . . 5 ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑)
65suballinf-P5 594 . . . 4 (∀𝑦[𝑡 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑)
74, 6bitrns-P3.33c.RC 303 . . 3 ([𝑡 / 𝑥]∀𝑦 ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑)
87subneg-P3.39.RC 324 . 2 (¬ [𝑡 / 𝑥]∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑)
9 df-exists-D5.1 596 . . 3 (∃𝑦[𝑡 / 𝑥]𝜑 ↔ ¬ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑)
109bisym-P3.33b.RC 299 . 2 (¬ ∀𝑦 ¬ [𝑡 / 𝑥]𝜑 ↔ ∃𝑦[𝑡 / 𝑥]𝜑)
112, 3, 8, 10tbitrns-P4.17.RC 431 1 ([𝑡 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝑡 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubex2-P6  799  psubspliteq-P6  800  psubsplitelof-P6  801
  Copyright terms: Public domain W3C validator