PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psuball2-P6

Theorem psuball2-P6 798
Description: Proper Substitution Over Universal Quantifier (different variable - non-freeness condition).

'𝑧' cannot occur in '𝑡'.

Hypothesis
Ref Expression
psuball2-P6.1 𝑧𝜑
Assertion
Ref Expression
psuball2-P6 ([𝑡 / 𝑥]∀𝑦𝜑 ↔ ∀𝑧[𝑡 / 𝑥][𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑡,𝑧   𝑥,𝑦,𝑧

Proof of Theorem psuball2-P6
StepHypRef Expression
1 psuball2-P6.1 . . . 4 𝑧𝜑
21cbvallpsub-P6 768 . . 3 (∀𝑦𝜑 ↔ ∀𝑧[𝑧 / 𝑦]𝜑)
32psubleq-P6 783 . 2 ([𝑡 / 𝑥]∀𝑦𝜑 ↔ [𝑡 / 𝑥]∀𝑧[𝑧 / 𝑦]𝜑)
4 psuball2v-P6 796 . 2 ([𝑡 / 𝑥]∀𝑧[𝑧 / 𝑦]𝜑 ↔ ∀𝑧[𝑡 / 𝑥][𝑧 / 𝑦]𝜑)
53, 4bitrns-P3.33c.RC 303 1 ([𝑡 / 𝑥]∀𝑦𝜑 ↔ ∀𝑧[𝑡 / 𝑥][𝑧 / 𝑦]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator