PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvallpsub-P6

Theorem cbvallpsub-P6 768
Description: Change of Bound Variable for '𝑥' with Proper Substitution.
Hypothesis
Ref Expression
cbvallpsub-P6.1 𝑦𝜑
Assertion
Ref Expression
cbvallpsub-P6 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem cbvallpsub-P6
StepHypRef Expression
1 lemma-L6.06a 766 . 2 𝑥[𝑦 / 𝑥]𝜑
2 cbvallpsub-P6.1 . 2 𝑦𝜑
3 psubtoisub-P6 765 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvall-P6 751 1 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psuball2-P6  798  ndalli-P6  822
  Copyright terms: Public domain W3C validator