PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubsplitelof-P6

Theorem psubsplitelof-P6 801
Description: Apply Proper Substitution to Split "Element Of" Predicate.

'𝑎' and '𝑏' are distinct form all other variables.

Assertion
Ref Expression
psubsplitelof-P6 ([𝑤 / 𝑥] 𝑡𝑢 ↔ ∃𝑎𝑏(([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎𝑏))
Distinct variable groups:   𝑡,𝑎   𝑢,𝑎   𝑤,𝑎   𝑡,𝑏   𝑢,𝑏   𝑤,𝑏,𝑎   𝑥,𝑎,𝑏

Proof of Theorem psubsplitelof-P6
StepHypRef Expression
1 splitelof-P6 778 . . 3 (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
21psubleq-P6 783 . 2 ([𝑤 / 𝑥] 𝑡𝑢 ↔ [𝑤 / 𝑥]∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
3 psubex2v-P6 797 . 2 ([𝑤 / 𝑥]∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) ↔ ∃𝑎[𝑤 / 𝑥]∃𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
4 psubex2v-P6 797 . . 3 ([𝑤 / 𝑥]∃𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) ↔ ∃𝑏[𝑤 / 𝑥]((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
54subexinf-P5 608 . 2 (∃𝑎[𝑤 / 𝑥]∃𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) ↔ ∃𝑎𝑏[𝑤 / 𝑥]((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
6 psuband-P6 792 . . . . 5 ([𝑤 / 𝑥]((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) ↔ ([𝑤 / 𝑥](𝑎 = 𝑡𝑏 = 𝑢) ∧ [𝑤 / 𝑥] 𝑎𝑏))
7 psuband-P6 792 . . . . . 6 ([𝑤 / 𝑥](𝑎 = 𝑡𝑏 = 𝑢) ↔ ([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢))
8 psubnfr-P6.VR 785 . . . . . 6 ([𝑤 / 𝑥] 𝑎𝑏𝑎𝑏)
97, 8subandd-P3.42c.RC 344 . . . . 5 (([𝑤 / 𝑥](𝑎 = 𝑡𝑏 = 𝑢) ∧ [𝑤 / 𝑥] 𝑎𝑏) ↔ (([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎𝑏))
106, 9bitrns-P3.33c.RC 303 . . . 4 ([𝑤 / 𝑥]((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) ↔ (([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎𝑏))
1110subexinf-P5 608 . . 3 (∃𝑏[𝑤 / 𝑥]((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) ↔ ∃𝑏(([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎𝑏))
1211subexinf-P5 608 . 2 (∃𝑎𝑏[𝑤 / 𝑥]((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) ↔ ∃𝑎𝑏(([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎𝑏))
132, 3, 5, 12tbitrns-P4.17.RC 431 1 ([𝑤 / 𝑥] 𝑡𝑢 ↔ ∃𝑎𝑏(([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎𝑏))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-elemof 7  wff-bi 104  wff-and 132  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inl 20  ax-L8-inr 21  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator