Proof of Theorem psubsplitelof-P6
| Step | Hyp | Ref
| Expression |
| 1 | | splitelof-P6 778 |
. . 3
⊢ (𝑡 ∈ 𝑢 ↔
∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 2 | 1 | psubleq-P6 783 |
. 2
⊢ ([𝑤 / 𝑥] 𝑡 ∈ 𝑢 ↔
[𝑤 / 𝑥]∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)) |
| 3 | | psubex2v-P6 797 |
. 2
⊢ ([𝑤 / 𝑥]∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
↔ ∃𝑎[𝑤 / 𝑥]∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 4 | | psubex2v-P6 797 |
. . 3
⊢ ([𝑤 / 𝑥]∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏) ↔ ∃𝑏[𝑤 / 𝑥]((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 5 | 4 | subexinf-P5 608 |
. 2
⊢ (∃𝑎[𝑤 / 𝑥]∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
↔ ∃𝑎∃𝑏[𝑤 / 𝑥]((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 6 | | psuband-P6 792 |
. . . . 5
⊢ ([𝑤 / 𝑥]((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
↔ ([𝑤 / 𝑥](𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ [𝑤 / 𝑥] 𝑎 ∈ 𝑏)) |
| 7 | | psuband-P6 792 |
. . . . . 6
⊢ ([𝑤 / 𝑥](𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ↔
([𝑤 / 𝑥]
𝑎 = 𝑡 ∧
[𝑤 / 𝑥] 𝑏 = 𝑢)) |
| 8 | | psubnfr-P6.VR 785 |
. . . . . 6
⊢ ([𝑤 / 𝑥] 𝑎 ∈ 𝑏 ↔
𝑎 ∈ 𝑏) |
| 9 | 7, 8 | subandd-P3.42c.RC 344 |
. . . . 5
⊢ (([𝑤 / 𝑥](𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
[𝑤 / 𝑥] 𝑎 ∈ 𝑏)
↔ (([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 10 | 6, 9 | bitrns-P3.33c.RC 303 |
. . . 4
⊢ ([𝑤 / 𝑥]((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
↔ (([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 11 | 10 | subexinf-P5 608 |
. . 3
⊢ (∃𝑏[𝑤 / 𝑥]((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏) ↔ ∃𝑏(([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 12 | 11 | subexinf-P5 608 |
. 2
⊢ (∃𝑎∃𝑏[𝑤 / 𝑥]((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
↔ ∃𝑎∃𝑏(([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 13 | 2, 3, 5, 12 | tbitrns-P4.17.RC 431 |
1
⊢ ([𝑤 / 𝑥] 𝑡 ∈ 𝑢 ↔
∃𝑎∃𝑏(([𝑤 / 𝑥] 𝑎 = 𝑡 ∧ [𝑤 / 𝑥] 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |