| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subandd-P3.42c.RC | |||
| Description: Inference Form of subandd-P3.42c 343. † |
| Ref | Expression |
|---|---|
| subandd-P3.42c.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| subandd-P3.42c.RC.2 | ⊢ (𝜒 ↔ 𝜗) |
| Ref | Expression |
|---|---|
| subandd-P3.42c.RC | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subandd-P3.42c.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | subandd-P3.42c.RC.2 | . . . 4 ⊢ (𝜒 ↔ 𝜗) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜗)) |
| 5 | 2, 4 | subandd-P3.42c 343 | . 2 ⊢ (⊤ → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗))) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∧ wff-and 132 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: oroverbi-P4.28b 469 imoverbi-P4.30b 479 biasandor-P4.34a 491 psubsplitelof-P6 801 |
| Copyright terms: Public domain | W3C validator |