PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suborl-P3.43a-L1

Theorem suborl-P3.43a-L1 345
Description: Lemma for suborl-P3.43a 346.
Hypothesis
Ref Expression
suborl-P3.43a-L1.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
suborl-P3.43a-L1 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))

Proof of Theorem suborl-P3.43a-L1
StepHypRef Expression
1 rcp-NDASM3of3 197 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → 𝜑)
2 suborl-P3.43a-L1.1 . . . . . . 7 (𝛾 → (𝜑𝜓))
32rcp-NDIMP1add2 212 . . . . . 6 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → (𝜑𝜓))
43ndbief-P3.14 179 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → (𝜑𝜓))
51, 4ndime-P3.6 171 . . . 4 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → 𝜓)
65ndorir-P3.11 176 . . 3 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → (𝜓𝜒))
7 rcp-NDASM3of3 197 . . . 4 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜒) → 𝜒)
87ndoril-P3.10 175 . . 3 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜒) → (𝜓𝜒))
9 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜒))
106, 8, 9rcp-NDORE3 236 . 2 ((𝛾 ∧ (𝜑𝜒)) → (𝜓𝜒))
1110rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND3 161
This theorem is referenced by:  suborl-P3.43a  346
  Copyright terms: Public domain W3C validator