Proof of Theorem suborl-P3.43a-L1
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM3of3 197 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ 𝜑) |
| 2 | | suborl-P3.43a-L1.1 |
. . . . . . 7
⊢ (𝛾 → (𝜑 ↔
𝜓)) |
| 3 | 2 | rcp-NDIMP1add2 212 |
. . . . . 6
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ (𝜑 ↔ 𝜓)) |
| 4 | 3 | ndbief-P3.14 179 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ (𝜑 → 𝜓)) |
| 5 | 1, 4 | ndime-P3.6 171 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ 𝜓) |
| 6 | 5 | ndorir-P3.11 176 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ (𝜓 ∨ 𝜒)) |
| 7 | | rcp-NDASM3of3 197 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜒)
→ 𝜒) |
| 8 | 7 | ndoril-P3.10 175 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜒)
→ (𝜓 ∨ 𝜒)) |
| 9 | | rcp-NDASM2of2 194 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒)) → (𝜑
∨ 𝜒)) |
| 10 | 6, 8, 9 | rcp-NDORE3 236 |
. 2
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒)) → (𝜓
∨ 𝜒)) |
| 11 | 10 | rcp-NDIMI2 224 |
1
⊢ (𝛾 → ((𝜑 ∨
𝜒) → (𝜓
∨ 𝜒))) |