PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suborl-P3.43a

Theorem suborl-P3.43a 346
Description: Left Substitution Theorem for '' .
Hypothesis
Ref Expression
suborl-P3.43a.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
suborl-P3.43a (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem suborl-P3.43a
StepHypRef Expression
1 suborl-P3.43a.1 . . 3 (𝛾 → (𝜑𝜓))
21suborl-P3.43a-L1 345 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
31bisym-P3.33b 298 . . 3 (𝛾 → (𝜓𝜑))
43suborl-P3.43a-L1 345 . 2 (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
52, 4ndbii-P3.13 178 1 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND3 161
This theorem is referenced by:  suborl-P3.43a.RC  347  suborr-P3.43b  348  subord-P3.43c  350  suborl2-P4  558
  Copyright terms: Public domain W3C validator