| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subord-P3.43c | |||
| Description: Dual Substitution Theorem for '∨' . † |
| Ref | Expression |
|---|---|
| subord-P3.43c.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| subord-P3.43c.2 | ⊢ (𝛾 → (𝜒 ↔ 𝜗)) |
| Ref | Expression |
|---|---|
| subord-P3.43c | ⊢ (𝛾 → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜗))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subord-P3.43c.1 | . . 3 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | suborl-P3.43a 346 | . 2 ⊢ (𝛾 → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) |
| 3 | subord-P3.43c.2 | . . 3 ⊢ (𝛾 → (𝜒 ↔ 𝜗)) | |
| 4 | 3 | suborr-P3.43b 348 | . 2 ⊢ (𝛾 → ((𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜗))) |
| 5 | 2, 4 | bitrns-P3.33c 302 | 1 ⊢ (𝛾 → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜗))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: subord-P3.43c.RC 351 subord2-P4 562 example-E5.02a 664 |
| Copyright terms: Public domain | W3C validator |