| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > suborr-P3.43b.RC | |||
| Description: Inference Form of suborr-P3.43b 348. |
| Ref | Expression |
|---|---|
| suborr-P3.43b.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| suborr-P3.43b.RC | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suborr-P3.43b.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | suborr-P3.43b 348 | . 2 ⊢ (⊤ → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∨ wff-or 144 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: idornthmr-P4.24b 449 oroverbi-P4.28-L3 468 lemma-L4.5 484 dfnfreealt-P6 683 nfrneg-P6 688 |
| Copyright terms: Public domain | W3C validator |