PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suborr-P3.43b.RC

Theorem suborr-P3.43b.RC 349
Description: Inference Form of suborr-P3.43b 348.
Hypothesis
Ref Expression
suborr-P3.43b.RC.1 (𝜑𝜓)
Assertion
Ref Expression
suborr-P3.43b.RC ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem suborr-P3.43b.RC
StepHypRef Expression
1 suborr-P3.43b.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32suborr-P3.43b 348 . 2 (⊤ → ((𝜒𝜑) ↔ (𝜒𝜓)))
43ndtruee-P3.18 183 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  idornthmr-P4.24b  449  oroverbi-P4.28-L3  468  lemma-L4.5  484  dfnfreealt-P6  683  nfrneg-P6  688
  Copyright terms: Public domain W3C validator