| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idornthmr-P4.24b | |||
| Description: '∨' Identity is Any Refuted Statement (right). † |
| Ref | Expression |
|---|---|
| idornthmr-P4.24b.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| idornthmr-P4.24b | ⊢ ((𝜓 ∨ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idorfalser-P4.20b 441 | . 2 ⊢ ((𝜓 ∨ ⊥) ↔ 𝜓) | |
| 2 | idornthmr-P4.24b.1 | . . . . . 6 ⊢ ¬ 𝜑 | |
| 3 | 2 | nthmeqfalse-P4.21b 443 | . . . . 5 ⊢ (𝜑 ↔ ⊥) |
| 4 | 3 | suborr-P3.43b.RC 349 | . . . 4 ⊢ ((𝜓 ∨ 𝜑) ↔ (𝜓 ∨ ⊥)) |
| 5 | 4 | subbil-P3.41a.RC 333 | . . 3 ⊢ (((𝜓 ∨ 𝜑) ↔ 𝜓) ↔ ((𝜓 ∨ ⊥) ↔ 𝜓)) |
| 6 | 5 | rcp-NDBIER0 241 | . 2 ⊢ (((𝜓 ∨ ⊥) ↔ 𝜓) → ((𝜓 ∨ 𝜑) ↔ 𝜓)) |
| 7 | 1, 6 | rcp-NDIME0 228 | 1 ⊢ ((𝜓 ∨ 𝜑) ↔ 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 ↔ wff-bi 104 ∨ wff-or 144 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND3 161 |
| This theorem is referenced by: biasandor-P4.34a 491 |
| Copyright terms: Public domain | W3C validator |