PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idornthmr-P4.24b

Theorem idornthmr-P4.24b 449
Description: '' Identity is Any Refuted Statement (right).
Hypothesis
Ref Expression
idornthmr-P4.24b.1 ¬ 𝜑
Assertion
Ref Expression
idornthmr-P4.24b ((𝜓𝜑) ↔ 𝜓)

Proof of Theorem idornthmr-P4.24b
StepHypRef Expression
1 idorfalser-P4.20b 441 . 2 ((𝜓 ∨ ⊥) ↔ 𝜓)
2 idornthmr-P4.24b.1 . . . . . 6 ¬ 𝜑
32nthmeqfalse-P4.21b 443 . . . . 5 (𝜑 ↔ ⊥)
43suborr-P3.43b.RC 349 . . . 4 ((𝜓𝜑) ↔ (𝜓 ∨ ⊥))
54subbil-P3.41a.RC 333 . . 3 (((𝜓𝜑) ↔ 𝜓) ↔ ((𝜓 ∨ ⊥) ↔ 𝜓))
65rcp-NDBIER0 241 . 2 (((𝜓 ∨ ⊥) ↔ 𝜓) → ((𝜓𝜑) ↔ 𝜓))
71, 6rcp-NDIME0 228 1 ((𝜓𝜑) ↔ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-or 144  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161
This theorem is referenced by:  biasandor-P4.34a  491
  Copyright terms: Public domain W3C validator