| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idorfalser-P4.20b | |||
| Description: '∨' Identity is '⊥' (right). † |
| Ref | Expression |
|---|---|
| idorfalser-P4.20b | ⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idorfalsel-P4.20a 440 | . 2 ⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) | |
| 2 | orcomm-P3.37 319 | . . . 4 ⊢ ((⊥ ∨ 𝜑) ↔ (𝜑 ∨ ⊥)) | |
| 3 | 2 | subbil-P3.41a.RC 333 | . . 3 ⊢ (((⊥ ∨ 𝜑) ↔ 𝜑) ↔ ((𝜑 ∨ ⊥) ↔ 𝜑)) |
| 4 | 3 | rcp-NDBIEF0 240 | . 2 ⊢ (((⊥ ∨ 𝜑) ↔ 𝜑) → ((𝜑 ∨ ⊥) ↔ 𝜑)) |
| 5 | 1, 4 | rcp-NDIME0 228 | 1 ⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∨ wff-or 144 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: idornthmr-P4.24b 449 truthtbltorf-P4.38b 504 |
| Copyright terms: Public domain | W3C validator |