PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idorfalser-P4.20b

Theorem idorfalser-P4.20b 441
Description: '' Identity is '' (right).
Assertion
Ref Expression
idorfalser-P4.20b ((𝜑 ∨ ⊥) ↔ 𝜑)

Proof of Theorem idorfalser-P4.20b
StepHypRef Expression
1 idorfalsel-P4.20a 440 . 2 ((⊥ ∨ 𝜑) ↔ 𝜑)
2 orcomm-P3.37 319 . . . 4 ((⊥ ∨ 𝜑) ↔ (𝜑 ∨ ⊥))
32subbil-P3.41a.RC 333 . . 3 (((⊥ ∨ 𝜑) ↔ 𝜑) ↔ ((𝜑 ∨ ⊥) ↔ 𝜑))
43rcp-NDBIEF0 240 . 2 (((⊥ ∨ 𝜑) ↔ 𝜑) → ((𝜑 ∨ ⊥) ↔ 𝜑))
51, 4rcp-NDIME0 228 1 ((𝜑 ∨ ⊥) ↔ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-or 144  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  idornthmr-P4.24b  449  truthtbltorf-P4.38b  504
  Copyright terms: Public domain W3C validator