PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  truthtbltorf-P4.38b

Theorem truthtbltorf-P4.38b 504
Description: ( T F ) T.
Assertion
Ref Expression
truthtbltorf-P4.38b ((⊤ ∨ ⊥) ↔ ⊤)

Proof of Theorem truthtbltorf-P4.38b
StepHypRef Expression
1 idorfalser-P4.20b 441 1 ((⊤ ∨ ⊥) ↔ ⊤)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-or 144  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator