PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idorfalsel-P4.20a

Theorem idorfalsel-P4.20a 440
Description: '' Identity is '' (left).
Assertion
Ref Expression
idorfalsel-P4.20a ((⊥ ∨ 𝜑) ↔ 𝜑)

Proof of Theorem idorfalsel-P4.20a
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 (((⊥ ∨ 𝜑) ∧ ⊥) → ⊥)
21falseimpoe-P4.4c 383 . . 3 (((⊥ ∨ 𝜑) ∧ ⊥) → 𝜑)
3 rcp-NDASM2of2 194 . . 3 (((⊥ ∨ 𝜑) ∧ 𝜑) → 𝜑)
4 rcp-NDASM1of1 192 . . 3 ((⊥ ∨ 𝜑) → (⊥ ∨ 𝜑))
52, 3, 4rcp-NDORE2 235 . 2 ((⊥ ∨ 𝜑) → 𝜑)
6 ndoril-P3.10.CL 245 . 2 (𝜑 → (⊥ ∨ 𝜑))
75, 6rcp-NDBII0 239 1 ((⊥ ∨ 𝜑) ↔ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-or 144  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  idorfalser-P4.20b  441  idornthml-P4.24a  448  truthtblfort-P4.38c  505  truthtblforf-P4.38d  506
  Copyright terms: Public domain W3C validator