| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idorfalsel-P4.20a | |||
| Description: '∨' Identity is '⊥' (left). † |
| Ref | Expression |
|---|---|
| idorfalsel-P4.20a | ⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . 4 ⊢ (((⊥ ∨ 𝜑) ∧ ⊥) → ⊥) | |
| 2 | 1 | falseimpoe-P4.4c 383 | . . 3 ⊢ (((⊥ ∨ 𝜑) ∧ ⊥) → 𝜑) |
| 3 | rcp-NDASM2of2 194 | . . 3 ⊢ (((⊥ ∨ 𝜑) ∧ 𝜑) → 𝜑) | |
| 4 | rcp-NDASM1of1 192 | . . 3 ⊢ ((⊥ ∨ 𝜑) → (⊥ ∨ 𝜑)) | |
| 5 | 2, 3, 4 | rcp-NDORE2 235 | . 2 ⊢ ((⊥ ∨ 𝜑) → 𝜑) |
| 6 | ndoril-P3.10.CL 245 | . 2 ⊢ (𝜑 → (⊥ ∨ 𝜑)) | |
| 7 | 5, 6 | rcp-NDBII0 239 | 1 ⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∧ wff-and 132 ∨ wff-or 144 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: idorfalser-P4.20b 441 idornthml-P4.24a 448 truthtblfort-P4.38c 505 truthtblforf-P4.38d 506 |
| Copyright terms: Public domain | W3C validator |