| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subbil-P3.41a.RC | |||
| Description: Inference Form of subbil-P3.41a 332. † |
| Ref | Expression |
|---|---|
| subbil-P3.41a.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subbil-P3.41a.RC | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subbil-P3.41a.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | subbil-P3.41a 332 | . 2 ⊢ (⊤ → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: idandtruer-P4.19b 439 idorfalser-P4.20b 441 idandthml-P4.23a 446 idandthmr-P4.23b 447 idornthml-P4.24a 448 idornthmr-P4.24b 449 |
| Copyright terms: Public domain | W3C validator |