PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbil-P3.41a.RC

Theorem subbil-P3.41a.RC 333
Description: Inference Form of subbil-P3.41a 332.
Hypothesis
Ref Expression
subbil-P3.41a.RC.1 (𝜑𝜓)
Assertion
Ref Expression
subbil-P3.41a.RC ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem subbil-P3.41a.RC
StepHypRef Expression
1 subbil-P3.41a.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32subbil-P3.41a 332 . 2 (⊤ → ((𝜑𝜒) ↔ (𝜓𝜒)))
43ndtruee-P3.18 183 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  idandtruer-P4.19b  439  idorfalser-P4.20b  441  idandthml-P4.23a  446  idandthmr-P4.23b  447  idornthml-P4.24a  448  idornthmr-P4.24b  449
  Copyright terms: Public domain W3C validator