PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIME0

Theorem rcp-NDIME0 228
Description: This is the same is ax-MP 14.
Hypotheses
Ref Expression
rcp-NDIME0.1 𝜑
rcp-NDIME0.2 (𝜑𝜓)
Assertion
Ref Expression
rcp-NDIME0 𝜓

Proof of Theorem rcp-NDIME0
StepHypRef Expression
1 rcp-NDIME0.1 . . . 4 𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → 𝜑)
3 rcp-NDIME0.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
52, 4ndime-P3.6 171 . 2 (⊤ → 𝜓)
65ndtruee-P3.18 183 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155
This theorem is referenced by:  idandtruer-P4.19b  439  idorfalser-P4.20b  441  idandthml-P4.23a  446  idandthmr-P4.23b  447  idornthml-P4.24a  448  idornthmr-P4.24b  449  peirce2exclmid-P4.41b  513  exiav-P5.SH  616  spliteq-P6  776  splitelof-P6  778  nfrterm-P6  779  psubim-P6-L2  790  ndnfrneg-P7.2  827  alli-P7  947  axL6-P7  961  example-E7.1b  1075
  Copyright terms: Public domain W3C validator