| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDIME0 | |||
| Description: This is the same is ax-MP 14. † |
| Ref | Expression |
|---|---|
| rcp-NDIME0.1 | ⊢ 𝜑 |
| rcp-NDIME0.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rcp-NDIME0 | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDIME0.1 | . . . 4 ⊢ 𝜑 | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → 𝜑) |
| 3 | rcp-NDIME0.2 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 5 | 2, 4 | ndime-P3.6 171 | . 2 ⊢ (⊤ → 𝜓) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ 𝜓 |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-true-D2.4 155 |
| This theorem is referenced by: idandtruer-P4.19b 439 idorfalser-P4.20b 441 idandthml-P4.23a 446 idandthmr-P4.23b 447 idornthml-P4.24a 448 idornthmr-P4.24b 449 peirce2exclmid-P4.41b 513 exiav-P5.SH 616 spliteq-P6 776 splitelof-P6 778 nfrterm-P6 779 psubim-P6-L2 790 ndnfrneg-P7.2 827 alli-P7 947 axL6-P7 961 example-E7.1b 1075 |
| Copyright terms: Public domain | W3C validator |