PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDANDI0

Theorem rcp-NDANDI0 229
Description: '' Introduction.
Hypotheses
Ref Expression
rcp-NDANDI0.1 𝜑
rcp-NDANDI0.2 𝜓
Assertion
Ref Expression
rcp-NDANDI0 (𝜑𝜓)

Proof of Theorem rcp-NDANDI0
StepHypRef Expression
1 rcp-NDANDI0.1 . . . 4 𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → 𝜑)
3 rcp-NDANDI0.2 . . . 4 𝜓
43ndtruei-P3.17 182 . . 3 (⊤ → 𝜓)
52, 4ndandi-P3.7 172 . 2 (⊤ → (𝜑𝜓))
65ndtruee-P3.18 183 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator