Proof of Theorem splitelof-P6
| Step | Hyp | Ref
| Expression |
| 1 | | axL6ex-P5 625 |
. 2
⊢ ∃𝑏 𝑏 = 𝑢 |
| 2 | | nfrv-P6 686 |
. . . 4
⊢ Ⅎ𝑏 𝑡 ∈ 𝑢 |
| 3 | | nfrex1-P6 742 |
. . . . 5
⊢ Ⅎ𝑏∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏) |
| 4 | 3 | nfrex2-P6 744 |
. . . 4
⊢ Ⅎ𝑏∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏) |
| 5 | 2, 4 | nfrbi-P6 691 |
. . 3
⊢ Ⅎ𝑏(𝑡 ∈ 𝑢 ↔ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)) |
| 6 | | axL6ex-P5 625 |
. . . 4
⊢ ∃𝑎 𝑎 = 𝑡 |
| 7 | | nfrv-P6 686 |
. . . . . 6
⊢ Ⅎ𝑎 𝑏 = 𝑢 |
| 8 | | nfrv-P6 686 |
. . . . . . 7
⊢ Ⅎ𝑎 𝑡 ∈ 𝑢 |
| 9 | | nfrex1-P6 742 |
. . . . . . 7
⊢ Ⅎ𝑎∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏) |
| 10 | 8, 9 | nfrbi-P6 691 |
. . . . . 6
⊢ Ⅎ𝑎(𝑡 ∈ 𝑢 ↔ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)) |
| 11 | 7, 10 | nfrim-P6 689 |
. . . . 5
⊢ Ⅎ𝑎(𝑏 = 𝑢 → (𝑡 ∈
𝑢 ↔ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏))) |
| 12 | | splitelof-P6-L1 777 |
. . . . . 6
⊢ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) →
(𝑡 ∈ 𝑢
↔ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏))) |
| 13 | 12 | rcp-NDIMI2 224 |
. . . . 5
⊢ (𝑎 = 𝑡 → (𝑏 = 𝑢 → (𝑡 ∈ 𝑢 ↔
∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)))) |
| 14 | 11, 13 | exia-P6 746 |
. . . 4
⊢ (∃𝑎 𝑎 = 𝑡 → (𝑏 = 𝑢 → (𝑡 ∈
𝑢 ↔ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)))) |
| 15 | 6, 14 | rcp-NDIME0 228 |
. . 3
⊢ (𝑏 = 𝑢 → (𝑡 ∈ 𝑢 ↔
∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏))) |
| 16 | 5, 15 | exia-P6 746 |
. 2
⊢ (∃𝑏 𝑏 = 𝑢 → (𝑡 ∈
𝑢 ↔ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏))) |
| 17 | 1, 16 | rcp-NDIME0 228 |
1
⊢ (𝑡 ∈ 𝑢 ↔
∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |