PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  splitelof-P6

Theorem splitelof-P6 778
Description: Split "Element Of" Predicate Into Left and Right Halves.

'𝑎' and '𝑏' are distinct from all other variables.

Assertion
Ref Expression
splitelof-P6 (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
Distinct variable groups:   𝑡,𝑎   𝑢,𝑎   𝑡,𝑏   𝑢,𝑏,𝑎

Proof of Theorem splitelof-P6
StepHypRef Expression
1 axL6ex-P5 625 . 2 𝑏 𝑏 = 𝑢
2 nfrv-P6 686 . . . 4 𝑏 𝑡𝑢
3 nfrex1-P6 742 . . . . 5 𝑏𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)
43nfrex2-P6 744 . . . 4 𝑏𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)
52, 4nfrbi-P6 691 . . 3 𝑏(𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
6 axL6ex-P5 625 . . . 4 𝑎 𝑎 = 𝑡
7 nfrv-P6 686 . . . . . 6 𝑎 𝑏 = 𝑢
8 nfrv-P6 686 . . . . . . 7 𝑎 𝑡𝑢
9 nfrex1-P6 742 . . . . . . 7 𝑎𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)
108, 9nfrbi-P6 691 . . . . . 6 𝑎(𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
117, 10nfrim-P6 689 . . . . 5 𝑎(𝑏 = 𝑢 → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)))
12 splitelof-P6-L1 777 . . . . . 6 ((𝑎 = 𝑡𝑏 = 𝑢) → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)))
1312rcp-NDIMI2 224 . . . . 5 (𝑎 = 𝑡 → (𝑏 = 𝑢 → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))))
1411, 13exia-P6 746 . . . 4 (∃𝑎 𝑎 = 𝑡 → (𝑏 = 𝑢 → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))))
156, 14rcp-NDIME0 228 . . 3 (𝑏 = 𝑢 → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)))
165, 15exia-P6 746 . 2 (∃𝑏 𝑏 = 𝑢 → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)))
171, 16rcp-NDIME0 228 1 (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-elemof 7  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inl 20  ax-L8-inr 21  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  psubsplitelof-P6  801
  Copyright terms: Public domain W3C validator